Skip to main content
Log in

Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2009

Abstract

The fundamental parameters and limitations that determine the signal strength in tip-enhanced Raman scattering (TERS) are discussed. A semiquantitative analysis of the Raman signal expected in different experimental geometries and with different sample systems is presented, taking into account experimental parameters including Fresnel factor, numerical aperture of the illumination and collection optics, detection efficiency, and the Raman scattering cross section of the material. A top/side-on illumination geometry is essential for the study of nontransparent samples. It can yield the highest signal levels when strong tip–sample coupling using a metallic substrate provides large field enhancement. In contrast, axial/through-sample illumination is limited to transparent sample materials. Although conceptually simpler in experimental implementation and despite high numerical aperture signal collection efficiency, signals are generally weaker due to limited field enhancement. Crystalline solids with small Raman cross sections and dense molecular/biological systems with unavoidable far-field background provide the biggest challenge for TERS analysis yet at the same time hold the most exciting outstanding scientific questions TERS has the potential to answer.

Excitation and emission sequence in tip-enhanced Raman scattering. The signal intensity can be estimated for a given experimental layout considering numerical aperture, Raman scattering cross-section, and plasmonic field enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:096101

    Article  Google Scholar 

  2. Anderson MS (2000) Appl Phys Lett 76:3130

    Article  CAS  Google Scholar 

  3. Zhang W, Yeo BS, Schmid T, Zenobi R (2007) J Phys Chem C 111:1733

    Article  CAS  Google Scholar 

  4. Domke KF, Zhang D, Pettinger B (2006) J Am Chem Soc 128:14721

    Article  CAS  Google Scholar 

  5. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Opt Commun 183:333

    Article  CAS  Google Scholar 

  6. Steidtner J, Pettinger B (2008) Phys Rev Lett 100:236101

    Article  Google Scholar 

  7. Neacsu CC, Dreyer J, Behr N, Raschke MB (2006) Phys Rev B 73:193406

    Article  Google Scholar 

  8. Yeo BS, Amstad E, Schmid T, Stadler J, Zenobi R (2009) Small 8:952

    Article  Google Scholar 

  9. Hartschuh A, Qian H, Georgi C, Böhmer M, Novotny L (2009) Anal Bioanal Chem 394:1787

    Article  CAS  Google Scholar 

  10. Hartschuh A, Sanchez EJ, Xie XS, Novotny L (2003) Phys Rev Lett 90:095503

    Article  Google Scholar 

  11. Yano T-A, Inouye Y, Kawata S (2006) Nano Lett 6:1269

    Article  CAS  Google Scholar 

  12. Berweger S, Neacsu CC, Mao Y, Zhou H, Wong SS, Raschke MB (2009) Nat Nanotechnol 4:496

    Article  CAS  Google Scholar 

  13. Berweger S, Raschke MB (2009) J Raman Spectrosc (in press)

  14. Lee N, Hartschuh RD, Mehtani D, Kisliuk A, Maguire JF, Green M, Foster MD, Sokolov AP (2007) J Raman Spectrosc 38:789

    Article  CAS  Google Scholar 

  15. Matsui R, Verma P, Ichimura T, Inouye Y, Kawata S (2007) Appl Phys Lett 90:061906

    Article  Google Scholar 

  16. Motahashi M, Hayazawa N, Tarun A, Kawata S (2008) J Appl Phys 103:034309

    Article  Google Scholar 

  17. Ossikovski R, Nguyen Q, Picardi G (2007) Phys Rev B 75:045412

    Article  Google Scholar 

  18. Neacsu CC, Steudle GA, Raschke MB (2005) Appl Phys B 80:295

    Article  CAS  Google Scholar 

  19. Behr N, Raschke MB (2008) J Phys Chem C 112:3766

    Article  CAS  Google Scholar 

  20. Demming AL, Festy F, Richards D (2005) J Chem Phys 122:184716

    Article  CAS  Google Scholar 

  21. Denk W, Pohl DW (1990) J Vac Sci Tech B 9:510

    Article  Google Scholar 

  22. Novotny L, Bian RX, Xie XS (1997) Phys Rev Lett 79:645

    Article  CAS  Google Scholar 

  23. Roth RM, Panoiu NC, Adams MM, Osgood RM, Neacsu CC, Raschke MB (2006) Opt Express 14:2921

    Article  Google Scholar 

  24. Mehtani D, Lee N, Hartschuh RD, Kisliuk A, Foster MD, Sokolov AP, Maguire JF (2005) J Raman Spectrosc 36:1068

    Article  CAS  Google Scholar 

  25. Ren B, Picardi G, Pettinger B (2004) Rev Sci Instr 75:837

    Article  CAS  Google Scholar 

  26. Saito Y, Murakami T, Inouye Y, Kawata S (2005) Chem Lett 34:920

    Article  CAS  Google Scholar 

  27. Hartschuh A (2008) Angew Chem Int Ed 47:8178

    Article  CAS  Google Scholar 

  28. Ichimura T, Fujii S, Verma P, Yano T, Inouye Y, Kawata S (2009) Phys Rev Lett 102:186101

    Article  Google Scholar 

  29. Bailo E, Deckert V (2008) Angew Chem Int Ed 47:1658

    Article  CAS  Google Scholar 

  30. Cialla D, Deckert-Gaudig T, Budich C, Laue M, Möller R, Naumann D, Deckert V, Popp J (2009) J Raman Spectrosc 40:240

    Article  CAS  Google Scholar 

  31. Schmid T, Messmer A, Yeo BS, Zhang W, Zenobi R (2008) Anal Bioanal Chem 391:1907

    Article  CAS  Google Scholar 

  32. Yeo BS, Mädler S, Schmid T, Zhang W, Zenobi R (2008) J Phys Chem C 112:4867

    Article  CAS  Google Scholar 

  33. Yeo BS, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Chem Phys Lett 472:1

    Article  CAS  Google Scholar 

  34. Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131

    Article  CAS  Google Scholar 

  35. Chen CK, Heinz TF, Ricard D, Shen YR (1983) Phys Rev B 27:1965

    Article  CAS  Google Scholar 

  36. Le Ru EC, Grand J, Felidj N, Aubard J, Levi G, Hohenau A, Krenn JR, Blackie E, Etchegoin PG (2008) J Phys Chem C 112:8117

    Article  Google Scholar 

  37. Moskovits M (1985) Rev Mod Phys 57:783

    Article  CAS  Google Scholar 

  38. Aigouy L, Lahrech A, Gressilon S, Cory H, Boccara AC, Rivoal JC (1999) Opt Lett 24:187

    Article  CAS  Google Scholar 

  39. Roy D, Wang J, Williams C (2009) J Appl Phys 105:013530

    Article  Google Scholar 

  40. Micic M, Klymyshyn N, Suh YD, Lu HP (2003) J Phys Chem B 107:1574

    Article  CAS  Google Scholar 

  41. Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G (2007) Phys Rev B 76:113409

    Article  Google Scholar 

  42. Neacsu CC, Dreyer J, Behr N, Raschke MB (2007) Phys Rev B 75:236402

    Article  Google Scholar 

  43. Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge

    Google Scholar 

  44. Boyd RW (2003) Nonlinear optics. Elsevier, Amsterdam

    Google Scholar 

  45. Poborchii V, Tada T, Kanayama T (2005) Jap J Appl Phys 44:202

    Article  Google Scholar 

  46. Hayazawa N, Saito Y, Kawata S (2004) Appl Phys Lett 85:6239

    Article  CAS  Google Scholar 

  47. Novotny L, Sanchez EJ, Xie XS (1998) Ultramicroscopy 71:21

    Article  CAS  Google Scholar 

  48. Enderlein J, Ruckstuhl T, Seeger S (1999) Appl Opt 38:724

    Article  CAS  Google Scholar 

  49. Debus C, Lieb MA, Drechsler A, Meixner AJ (2002) J Microsc 210:203

    Article  Google Scholar 

  50. Sackrow M, Stanciu C, Lieb MA, Meixner AJ (2008) Chem Phys Chem 9:316

    CAS  Google Scholar 

  51. Steidtner J, Pettinger B (2007) Rev Sci Instr 78:103104

    Article  Google Scholar 

  52. Neacsu CC, Berweger S, Raschke MB (2007) NanoBiotechnol 3:172

    Article  CAS  Google Scholar 

  53. Hayazawa N, Motohashi M, Saito Y, Ishitobi H, Ono A, Ichimura T, Verma P, Kawata S (2007) J Raman Spectrosc 38:684

    Article  CAS  Google Scholar 

  54. Enderlein J, Böhmer M (2003) Opt Lett 28:941

    Article  Google Scholar 

  55. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) J Phys Chem C 111:13794

    Article  Google Scholar 

  56. Shim S, Stuart CM, Mathies RA (2008) Chem Phys Chem 9:697

    CAS  Google Scholar 

  57. Skinner JG, Nilsen WG (1968) J Opt Soc Am 58:113

    Article  CAS  Google Scholar 

  58. Rasmussen A, Deckert V (2006) J Raman Spectrosc 37:311

    Article  CAS  Google Scholar 

  59. Barrios CA, Malkovskiy AV, Kisliuk AM, Sokolov AP, Foster MD (2009) J Phys Chem C 113:8158

    Article  CAS  Google Scholar 

  60. Taguchi A, Hayazawa N, Saito Y, Ishitobi H, Tarun A, Kawata S (2009) Opt Express 17:6509

    Article  CAS  Google Scholar 

  61. Kuzmany H (1998) Solid-state spectroscopy. Springer, Berlin

    Google Scholar 

  62. Cardona M (ed) (1983) Light scattering in solids I. Springer, Berlin

    Google Scholar 

  63. Saito Y, Motohashi M, Hayazawa N, Iyoki M, Kawata SS (2006) Appl Phys Lett 88:143109

    Article  Google Scholar 

  64. Johnston WD, Kaminow IP (1968) Phys Rev 168:1045

    Article  CAS  Google Scholar 

  65. Ralston JM, Chang RK (1970) Phys Rev B 2:1858

    Article  Google Scholar 

  66. Palik ED (ed) (2000) Handbook of optical constants of solids. Springer, Berlin

    Google Scholar 

  67. Gucciardi PG, Lopes M, Deturche R, Julien C, Barchiesi D, de la Chapelle ML (2008) Nanotechnol 19:215702

    Article  Google Scholar 

  68. Hayes W, Loudon R (1978) Scattering of light by crystals. Dover, New York

    Google Scholar 

  69. Loa I, Gronemeyer S, Thomsen C, Ambacher O, Schikora D, As DJ (1998) J Raman Spectrosc 29:219

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge inspiring discussions with Y. Ron Shen. S. Berweger acknowledges support from the University of Washington Center for Nanotechnology with funding from NSF-IGERT. Funding from the National Science Foundation (NSF CAREER grant CHE 0748226) is gratefully acknowledged. We thank B. Burkholder for invaluable assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus B. Raschke.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00216-009-3378-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berweger, S., Raschke, M.B. Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique. Anal Bioanal Chem 396, 115–123 (2010). https://doi.org/10.1007/s00216-009-3085-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3085-1

Keywords

Navigation