Skip to main content
Log in

Electrochemical immunoassay using quantum dot/antibody probe for identification of cyanobacterial hepatotoxin microcystin-LR

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The presence of cyanobacterial hepatotoxins such as microcystin-LR poses health threats to humans due to their potential for causing severe physiological effects when contaminated drinking water is ingested. Here, the electrochemical detection of microcystin-LR is explored using a quantum dot/antibody (QD/Ab) probe for nanoparticle-based amplification and direct electrochemical transduction. The immunological recognition of microcystin-LR using the QD/Ab probe was amplified and converted to an electrochemical signal by measuring the cadmium ions released from QD based on square wave stripping voltammetry under optimized electrochemical factors. Whereas a qualitative analysis for microcystin-LR was achieved using the specific peak potential of the anodic voltammogram at −0.6 ± 0.05 V, concentration of the toxin was quantified based on the charge density of the anodic peak; a dynamic range of 0.227 to 50 μg/L and limit of detection of 0.099 μg/L were obtained with high sensitivity. The extracted microcystin-LR from Microcystis aeruginosa was estimated as 1,944 μg/g of dried weight of the microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Robillot C, Vinh J, Puiseux DS, Hennion MC (2000) Environ Sci Technol 34:3372–3378

    Article  CAS  Google Scholar 

  2. McElhiney J, Lawton LA (2005) Toxicol Appl Pharm 203:219–230

    Article  CAS  Google Scholar 

  3. Falconer I, Bartram J, Chorus I, Kuiper GT, Utkilen H, Burch M, Codd GA (1999) Safe levels and safe practices. E. & F.N. Spon, London

    Google Scholar 

  4. MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) FEBS Letters 264:187–192

    Article  CAS  Google Scholar 

  5. Bhattacharya R, Sugendran K, Dangi RS, Rao PV (1997) Biomed Environ Sci 10:93–101

    CAS  Google Scholar 

  6. Nishiwaki MR, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H (1992) J Cancer Res Clin Oncol 118:420–424

    Article  Google Scholar 

  7. Zhan L, Sakamoto H, Sakuraba M, Wu D-S, Zhang L-S, Suzuki T, Hayashi M, Honma M (2004) Mutat Res-gen Toxen 557:1–6

    Article  CAS  Google Scholar 

  8. Kuiper GT, Falconer IR, Fitzgerald J (1999) Toxic Cyanobacteria in water—a guide to their public health consequences, monitoring and management. Chorus, I., Bartram, J. ed WHO, E & FP Spon, London

  9. Azevedo SMFO, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Toxicology 181–182:441–446

    Article  Google Scholar 

  10. Zurawell RW, Chen H, Burke JM, Prepas EE (2005) J Toxicol Env Heal B 8:1–37

    Article  CAS  Google Scholar 

  11. WHO (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management

  12. Campas M, Szydlowska D, Trojanowicz M, Marty JL (2005) Biosens Bioelectron 20:1520–1530

    Article  CAS  Google Scholar 

  13. Campas M, Marty JL (2007) Biosens Bioelectron 22:1034–1040

    Article  CAS  Google Scholar 

  14. Dürkop A, Wolfbeis O (2005) J Fluoresc 15:755–761

    Article  Google Scholar 

  15. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL, Mattoussi H (2004) Anal Chem 76:684–688

    Article  CAS  Google Scholar 

  16. Wang J (2003) Anal Chim Acta 500:247–257

    Article  CAS  Google Scholar 

  17. Lee JW, Yu HW, Kim IS (2007) J Korean Society on Water Quality 23:705–711

    Google Scholar 

  18. Merkoc A, Marcolino JLH, Fatibello FSM, Alegret S (2007) Nanotechnology 3:6–12

    Google Scholar 

  19. Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  20. Dai Z, Kawde AN, Xiang Y, La BJT, Gerlach J, Bhavanandan VP, Joshi L, Wang J (2006) J Am Chem Soc 128:10018–10019

    Article  CAS  Google Scholar 

  21. Falconer IR (1993) Algal toxins in seafood and drinking water. Academic, London

    Google Scholar 

  22. Bouaïcha N, Maatouk I, Vincent G, Levi Y (2002) Food Chem Toxicol 40:1677–1683

    Article  Google Scholar 

  23. Rapala J, Erkomaa K, Kukkonen J, Sivonen K, Lahti K (2002) Anal Chim Acta 466:213–231

    Article  CAS  Google Scholar 

  24. Nagata S, Soutome H, Tsutsumi T, Hasegawa A, Sekijima M, Sugamata M, Harada K, Suganuma M, Ueno Y (1995) Nat Toxins 3:78–86

    Article  CAS  Google Scholar 

  25. Metcalf JS, Codd GA (2000) FEMS Microbiol Lett 184:241–6

    Article  CAS  Google Scholar 

  26. ISO (2005) Water quality. Determination of microcystins. Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection. International Organization for Standardization

  27. Noh M, Tothill I (2006) Anal Bioanal Chem 386:2095–2106

    Article  CAS  Google Scholar 

  28. Oliver RL (1994) J Phycol 30:161–173

    Article  CAS  Google Scholar 

  29. Song L, Sano T, Li R, Watanabe MM, Liu Y, Kaya K (1998) Phycol Res 46:19–23

    Article  CAS  Google Scholar 

  30. Harada K, Matsuura K, Suzuki M, Watanabe MF, Oishi S, Dahlem AM, Beasley VR, Carmichael WW (1990) Toxicon 28:55–64

    Article  CAS  Google Scholar 

  31. Domingos P, Rubim TK, Molica RJR, Azevedo SMFO, Carmichael WW (1999) Environ Toxicol 14:31–35

    Article  CAS  Google Scholar 

  32. Fanta K, Chandravanshi BS (2001) Electroanal 13:484–492

    Article  CAS  Google Scholar 

  33. Michael TL, Murimboh J, Hassan NM, Chakrabarti CL (2001) Electroanal 13:94–99

    Article  Google Scholar 

  34. Mocak J, Bond AM, Mitchell S, Scollary G (1997) Pure Appl Chem 69:292–328

    Article  Google Scholar 

  35. Lei LM, Wu YS, Gan NQ, Song LR (2004) Clinica Chimica Acta 348:177–180

    Article  CAS  Google Scholar 

  36. Sheng JW, He M, Shi HC, Qian Y (2006) Anal Chim Acta 572:309–315

    Article  CAS  Google Scholar 

  37. Loyprasert S, Thavarungkul P, Asawatreratanakul P, Wongkittisuksa B, Limsakul C, Kanatharana P (2008) Biosens Bioelectron 24:78–86

    Article  CAS  Google Scholar 

  38. Oudra B, Loudiki M, Vasconcelos V, Sabour B, Sbiyyaa B, Oufdou K, Mezrioul N (2002) Environ Toxicol 17:32–39

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (07SeaHEROA01-01) from the Plant Technology Advancement Program funded by the Ministry of Land, Transport and Maritime Affairs of the Korea Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, HW., Lee, J., Kim, S. et al. Electrochemical immunoassay using quantum dot/antibody probe for identification of cyanobacterial hepatotoxin microcystin-LR. Anal Bioanal Chem 394, 2173–2181 (2009). https://doi.org/10.1007/s00216-009-2910-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2910-x

Keywords

Navigation