Skip to main content
Log in

Multicomponent analyses of chiral samples by use of regression analysis of UV–visible spectra of cyclodextrin guest–host complexes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report the first combined use of analytical spectroscopy, guest–host chemistry, and multivariate regression analysis for determination of enantiometric composition of multicomponent samples of chiral analytes. Sample solutions containing multicomponent analytes of ephedrine, tryptophan, propranolol, and proline of varying enantiomeric composition with beta-cyclodextrin (BCD) or methyl-beta-cyclodextrin (Me-BCD) as chiral host molecules were investigated using ultraviolet (UV)–visible spectroscopy. The interactions of enantiomers of chiral analytes with chiral hosts resulted in the formation of transient diastereomeric inclusion complexes with varying spectral properties. Multivariate analysis using partial-least-square (PLS) regression was used to correlate subtle changes in the UV–visible spectra of the guest–host complexes with the enantiomeric composition of the calibration samples. These PLS regressions were carefully optimized and then used to predict the enantiomeric composition of multicomponent chiral analytes of validation samples. The results of these validation studies demonstrate the predictive ability of the regression models for determination of future enantiomeric composition of samples. The accuracy of the models to correctly predict the enantiomeric composition of samples, evaluated by use of the root mean square percent relative error (RMS%RE) was analyte and chiral host dependent. In general, better prediction of enantiomeric composition of samples and low RMS%RE values were obtained when Me-BCD was used as the chiral host. The analyses procedure reported here is simple, rapid, and inexpensive. In addition, this approach does not require prior separation of chiral analytes, thus reducing analysis time and eliminating the need for expensive chiral columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lenz W (1988) Teratology 38:203–215

    Article  CAS  Google Scholar 

  2. Jamali F, Mehvar R, Pasutto F (1989) J Pharm Sci 78:695–715

    Article  CAS  Google Scholar 

  3. Armstrong DW, Han SH (1988) CRC Crit Rev Anal Chem 19:175–224

    CAS  Google Scholar 

  4. Caldwell J (1996) J Chromatogr A 719:3–13

    Article  CAS  Google Scholar 

  5. Buszewski B, Jezierska-Switala M, Kowalska S (2003) J Chromatogr B 792:279–286

    Article  CAS  Google Scholar 

  6. Imai K, Zasshi Y (2003) Journal of the Pharmaceutical Society of Japan 123:901–917

    CAS  Google Scholar 

  7. Onouchi H, Hasegawa T, Kashiwagi D, Ishiguro H, Maeda K, Yashima E (2006) J Polym Sci A Polym Chem 44:5039–5048

    Article  CAS  Google Scholar 

  8. Pena C, Alfonso I, Tooth B, Voelcker NH, Gotor V (2007) J Org Chem 72:1924–1930

    Article  CAS  Google Scholar 

  9. Ravikumar M, Prabhakar S, Vairamani M (2007) Chem Commun 4:392-394

    Google Scholar 

  10. Sheng JJ, Saxena A, Duffel MW (2004) Drug Metab Dispos 32:559–565

    Article  CAS  Google Scholar 

  11. Rouhi A (2003) Chem Eng News 81:45–55

    Google Scholar 

  12. Stinson SC (1997) Chem Eng News 75:38–70

    Google Scholar 

  13. Slama I, Dufresne C, Jourdan E, Fahrat F, Villet A, Ravel A, Grosset C, Peyrin E (2002) Anal Chem 74:5205–5211

    Article  CAS  Google Scholar 

  14. Paik MJ, Lee Y, Goto J, Kim KR (2004) J Chromatogr B Anal Technol Biomed Life Sci 803:257–265

    Article  CAS  Google Scholar 

  15. Matsunaga H, Sadakane Y, Haginaka J (2003) Electrophoresis 24:2442–2447

    Article  CAS  Google Scholar 

  16. Barron LD, Zhu F, Hecht L (2006) Vibr Spectrosc 42:15–24

    Article  CAS  Google Scholar 

  17. Berova N, Nakanishi K, Woody RW (eds) (2000) Circular dichroism: principles and application. Wiley-VCH, New York

    Google Scholar 

  18. Yashima E, Yamamoto C, Okamoto Y (1996) J Am Chem Soc 118:4036–4048

    Article  CAS  Google Scholar 

  19. Sawada M, Takai Y, Yamada H, Nishida J, Kaneda T, Arakawa R, Okamoto M, Hirose K, Tanaka T, Naemura K (1998) J Chem Soc Perkin Trans 2:701–710

    Google Scholar 

  20. Zhu L, Anslyn EV (2004) J Am Chem Soc 126:3676–3677

    Article  CAS  Google Scholar 

  21. Zhu L, Zhong Z, Anslyn EV (2005) J Am Chem Soc 127:4260–4269

    Article  CAS  Google Scholar 

  22. Folmer-Andersen JF, Lynch VM, Anslyn EV (2005) J Am Chem Soc 127:7986–7987

    Article  CAS  Google Scholar 

  23. Choi MK, Kim HN, Choi HJ, Yoon J, Hyun MH (2008) Tetrahedron Lett 49:4522–4525

    Article  CAS  Google Scholar 

  24. Busch KW, Swamidoss IM, Fakayode SO, Busch MA (2003) J Am Chem Soc 125:1690–1691

    Article  CAS  Google Scholar 

  25. Busch KW, Swamidoss IM, Fakayode SO, Busch MA (2004) Anal Chim Acta 525:53–62

    Article  CAS  Google Scholar 

  26. Fakayode SO, Busch MA, Busch KW (2006) Talanta 68:1574–1583

    Article  CAS  Google Scholar 

  27. Fakayode SO, Swamidoss IM, Busch MA, Busch KW (2005) Talanta 65:838–845

    Article  CAS  Google Scholar 

  28. Fakayode SO, Busch MA, Bellert DJ, Busch KW (2005) Analyst 130:233–241

    Article  CAS  Google Scholar 

  29. Fakayode SO, Williams AA, Busch MA, Busch KW, Warner IM (2006) J Fluoresc 16:659–670

    Article  CAS  Google Scholar 

  30. Williams AA, Fakayode SO, Alptürk O, Jones CM, Lowry M, Strongin RM, Warner IM (2008) J Fluores 18:285–296

    Article  CAS  Google Scholar 

  31. Williams AA, Fakayode SO, Lowry M, Warner IM (2009) Chirality 21:305–315

    Article  CAS  Google Scholar 

  32. Tran CD, Oliveira D, Yu S (2006) Anal Chem 78:1349–1356

    Article  CAS  Google Scholar 

  33. Tran CD, Oliveira D (2006) Anal Biochem 356:51–58

    Article  CAS  Google Scholar 

  34. Zhou L, Lin Z, Welch CJ, Ge Z, Ellison D (2006) Chirality 18:306–313

    Article  CAS  Google Scholar 

  35. Wang Y, Zhang F, Liang J, Li H, Kong J (2007) Spectrochim Acta A 68:279–283

    Article  Google Scholar 

  36. Pavia DL, Lampman GM, Kriz GS (1996) Introduction to spectroscopy. Harcourt Brace College, Fort Worth

    Google Scholar 

  37. Adams MJ (1995) Chemometrics in analytical spectroscopy. Royal Society of Chemistry, Cambridge

    Google Scholar 

  38. Malinowski ER (1991) Factor analysis in chemistry. Wiley, New York

    Google Scholar 

  39. Martens H, Naes T (1998) Multivariate calibration. Wiley, New York

    Google Scholar 

  40. Tran CD, Grishko VI, Challa S (2005) Spectrochim Acta A 62:38–41

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledged an NSF-HBCU-UP Grant (HRD-0308747) for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayo O. Fakayode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakayode, S.O., Brady, P.N., Pollard, D.A. et al. Multicomponent analyses of chiral samples by use of regression analysis of UV–visible spectra of cyclodextrin guest–host complexes. Anal Bioanal Chem 394, 1645–1653 (2009). https://doi.org/10.1007/s00216-009-2853-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2853-2

Keywords

Navigation