Skip to main content
Log in

Determination of filbertone in spiked olive oil samples using headspace-programmed temperature vaporization-gas chromatography–mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive method for the fast analysis of filbertone in spiked olive oil samples is presented. The applicability of a headspace (HS) autosampler in combination with a gas chromatograph (GC) equipped with a programmable temperature vaporizer (PTV) and a mass spectrometric (MS) detector is explored. A modular accelerated column heater (MACHTM) was used to control the temperature of the capillary gas chromatography column. This module can be heated and cooled very rapidly, shortening total analysis cycle times to a considerable extent. The proposed method does not require any previous analyte extraction, filtration and preconcentration step, as in most methods described to date. Sample preparation is reduced to placing the olive oil sample in the vial. This reduces the analysis time and the experimental errors associated with this step of the analytical process. By using headspace generation, the volatiles of the sample are analysed without interference by the non-volatile matrix, and by using injection in solvent-vent mode at the PTV inlet, most of the compounds that are more volatile than filbertone are purged and the matrix effect is minimised. Use of a liner packed with Tenax-TA® allowed the compound of interest to be retained during the venting process. The limits of detection and quantification were as low as 0.27 and 0.83 µg/L, respectively, and precision (measured as the relative standard deviation) was 5.7%. The method was applied to the determination of filbertone in spiked olive oil samples and the results revealed the good accuracy obtained with the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parcerisa J, Casals I, Boatella J, Codony R, Rafecas M (2000) J Chromatogr A 881:149–158

    Article  CAS  Google Scholar 

  2. Emberger R, Köpsel M, Brünning J, Hopp R, Sand T (1987) Chem Abstr 106:155899f

    Google Scholar 

  3. Pfnuer P, Matsui T, Grosch W, Guth H, Hofmann T, Schieberle P (1999) J Agric Food Chem 47:2044–2047

    Article  CAS  Google Scholar 

  4. Blanch GP, Caja MM, Ruiz del Castillo ML, Herraiz M (1998) J Agric Food Chem 46:3153–3157

    Article  CAS  Google Scholar 

  5. Blanch GP, Caja MM, León M, Herraiz M (2000) J Sci Food Agric 80:140–144

    Article  CAS  Google Scholar 

  6. Caja MM, Ruiz del Castillo ML, Martínez Álvarez R, Herraiz M, Blanch GP (2000) Eur Food Res Technol 211:45–51

    Article  Google Scholar 

  7. Flores G, del Castillo ML Ruiz, Blanch GP, Herraiz M (2006) Food Chem 97:336–342

    Article  CAS  Google Scholar 

  8. Ruiz del Castillo ML, Flores G, Herraiz M, Blanch GP (2003) J Agric Food 51:2496–2500

    Article  CAS  Google Scholar 

  9. del Castillo ML Ruiz, Herraiz M (2003) J Am Oil Chem Soc 80:307–310

    Article  Google Scholar 

  10. Blanch GP, Jauch J (1998) J Agric Food Chem 46:4283–4286

    Article  CAS  Google Scholar 

  11. Ruiz del Castillo ML, Caja MM, Herraiz M, Blanch GP (1998) J Agric Food Chem 46:5128–5131

    Article  CAS  Google Scholar 

  12. Flores G, del Castillo ML Ruiz, Herraiz M, Blanch GP (2006) Food Chem 97:742–749

    Article  CAS  Google Scholar 

  13. Aparicio R, Aparicio-Ruiz R (2000) J Chromatogr A 881:93–104

    Article  CAS  Google Scholar 

  14. Engewald W, Teske J, Efer J (1999) J Chromatogr A 856:259–278

    Article  CAS  Google Scholar 

  15. Pérez Pavón JL, Nogal Sánchez M, Fernández Laespada ME, García Pinto C, Moreno Cordero B (2007) J Chromatogr A 1141:123–130

    Article  Google Scholar 

  16. Pérez Pavón JL, Nogal Sánchez M, Fernández Laespada ME, Moreno Cordero B (2007) J Chromatogr. A 1175:106–111

    Article  Google Scholar 

  17. Pérez Pavón JL, Nogal Sánchez M, Fernández Laespada ME, Moreno Cordero B (2008) J Chromatogr A 1202:196–202

    Article  Google Scholar 

  18. Pérez Pavón JL, Herrero Martín S, García Pinto C, Moreno Cordero B (2008) J Chromatogr A 1194:103–110

    Article  Google Scholar 

  19. Marigheto NA, Kemsley EK, Defernez M, Wilson RH (1998) J Am Oil Chem Soc 75:987–992

    CAS  Google Scholar 

  20. Baeten V, Meurens M (1996) J Agric Food Chem 44:2225–2230

    Article  CAS  Google Scholar 

  21. Marcos Lorenzo I, Pérez Pavón JL, Fernández Laespada ME, García Pinto C, Moreno Cordero B (2002) J Chromatogr A 945:221–230

    Article  CAS  Google Scholar 

  22. Cerrato Oliveros MC, Pérez Pavón JL, García Pinto C, Fernández Laespada ME, Moreno Cordero B, Forina M (2002) Anal Chim Acta 459:219–228

    Article  CAS  Google Scholar 

  23. Chiavaro E, Vittadini E, Rodriguez-Estrada MT, Cerretani L, Bendini A (2008) Food Chem 110:248–256

    Article  CAS  Google Scholar 

  24. García-González DL, Mannina L, D´Imperio M, Segre AL, Aparicio R (2004) Eur Food Res Technol 219:545–548

    Article  Google Scholar 

  25. Zamora R, Alba V, Hidalgo FJ (2001) J Am Oil Chem Soc 78:89–94

    Article  CAS  Google Scholar 

  26. Peña F, Cárdenas S, Gallego M, Valcárcel M (2005) J Chromatogr A 1074:215–221

    Article  Google Scholar 

  27. Hoffmann A, Tienpont B, David F, Sandra P (2006) Application Note 6. Gerstel, Mülheim an der Ruhr, Germany

    Google Scholar 

  28. Enhanced ChemStation, MSD ChemStation E.00.00.202, Agilent Technologies, 2007, CA, USA.

  29. Protocol for the determination of filbertone in olive and hazelnut oils by automated headspace GC-MS. Central Science Laboratories, Sand Hutton York YO41 1LZ-UK.

  30. Vichi S, Guadayol JM, Caixach J, López-Tamames E, Buxaderas S (2007) Food Chem 105:1171–1178

    Article  CAS  Google Scholar 

  31. Matisova E, Dömötörová M (2003) J Chromatogr A 1000:199–221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the DGI (Project CTQ2007-63157/BQU) and the Consejería de Educación y Cultura of the Junta de Castilla y León (Project SA112A08) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Pérez Pavón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez Pavón, J.L., del Nogal Sánchez, M., Fernández Laespada, M.E. et al. Determination of filbertone in spiked olive oil samples using headspace-programmed temperature vaporization-gas chromatography–mass spectrometry. Anal Bioanal Chem 394, 1463–1470 (2009). https://doi.org/10.1007/s00216-009-2795-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2795-8

Keywords

Navigation