Skip to main content
Log in

Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The discrimination and classification of allergy-relevant pollen was studied for the first time by mid-infrared Fourier transform infrared (FT-IR) microspectroscopy together with unsupervised and supervised multivariate statistical methods. Pollen samples of 11 different taxa were collected, whose outdoor air concentration during the flowering time is typically measured by aerobiological monitoring networks. Unsupervised hierarchical cluster analysis provided valuable information about the reproducibility of FT-IR spectra of the same taxon acquired either from one pollen grain in a 25 × 25 μm2 area or from a group of grains inside a 100 × 100 μm2 area. As regards the supervised learning method, best results were achieved using a K nearest neighbors classifier and the leave-one-out cross-validation procedure on the dataset composed of single pollen grain spectra (overall accuracy 84%). FT-IR microspectroscopy is therefore a reliable method for discrimination and classification of allergenic pollen. The limits of its practical application to the monitoring performed in the aerobiological stations were also discussed.

Traditional and innovative methods for the identification of airborne pollen grains

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johansson SGO (2002) Clin Exp Allergy 2:2–7

    Article  CAS  Google Scholar 

  2. Weber RW (1998) Ann Allergy 80:141–145

    Article  CAS  Google Scholar 

  3. Chuine I, Belmonte J (2004) Grana 43:65–80

    Article  Google Scholar 

  4. Faegri K, Iersen J (1989) Textbook of pollen analysis. John Wiley & Sons Ltd, London UK

    Google Scholar 

  5. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell Scientific Publications, Oxford UK

    Google Scholar 

  6. Hirst JM (1952) Ann Appl Biol 39:257–265

    Article  Google Scholar 

  7. Naumann D, Helm D, Labischinski H (1991) Nature 351:81–82

    Article  CAS  Google Scholar 

  8. Nabet A, Pezolet M (1997) Appl Spectros 51:466–469

    Article  CAS  Google Scholar 

  9. Petibois C, Gionnet K, Goncalves M, Perromat A, Moenner M, Deleris G (2006) Analyst 131:640–647

    Article  CAS  Google Scholar 

  10. Orsini F, Ami D, Villa AM, Sala G, Bellotti MG, Doglia SM (2000) J Microbiol Meth 42:17–27

    Article  CAS  Google Scholar 

  11. Mariey L, Signolle JP, Amiel C, Travert J (2001) Vib Spectros 26:151–159

    Article  CAS  Google Scholar 

  12. Miguel Gomez MA, Bratos Perez MA, Martin Gil JF, Duenas Diez A, Martin Rodriguez JF, Gutierrez Rodriguez P, Orduna Domingo A, Rodriguez Torres A (2003) J Microbiol Meth 55:121–131

    Article  CAS  Google Scholar 

  13. Pastuszka JS, Talik E, Hacura A, Sloka J, Wlazlo A (2005) Aerobiologia 21:181–192

    Article  Google Scholar 

  14. Al-Holy MA, Lin M, Al-Qadiri H, Cavinato AG, Rasco BA (2006) J Rapid Meth Autom Microbiol 14:189–200

    Article  CAS  Google Scholar 

  15. Dokken KM, Davis LC, Marinkovic NS (2005) Appl Spec Rev 40(4):301–326

    Article  Google Scholar 

  16. Mouille G, Robin S, Lecomte M, Pagant S, Höfte H (2003) Plant J 35:393–404

    Article  CAS  Google Scholar 

  17. Laucks ML, Davis EJ (1998) J Aerosol Sci 29:s603–s604

    Article  Google Scholar 

  18. Laucks ML, Roll G, Schweiger G, Davis EJ (2000) J Aerosol Sci 31:307–319

    Article  CAS  Google Scholar 

  19. Pappas CS, Tarantilis PA, Polissiou MG, Harizanis PC (2003) Appl Spectros 57:23–27

    Article  CAS  Google Scholar 

  20. Gottardini E, Rossi S, Cristofolini F, Benedetti L (2007) Aerobiologia 23:211–219

    Article  Google Scholar 

  21. Ivleva NP, Niessner R, Panne U (2005) Anal Bioanal Chem 381:261–267

    Article  CAS  Google Scholar 

  22. Schulte F, Lingott J, Panne U, Kneipp J (2008) Anal Chem 80(24):9551–9556

    Article  CAS  Google Scholar 

  23. R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna AU (URL: http://www.R-project.org)

  24. Savitzky A, Golay MJE (1964) Anal. Chem 36:1627–1623

    CAS  Google Scholar 

  25. Gordon AD (1999) Classification (Second edition). Chapman and Hall/CRC Press, London UK

    Google Scholar 

  26. Weiss SM, Kulikowski CA (1991) Computer systems that learn. Morgan Kaufmann Publishers, San Mateo CA

    Google Scholar 

  27. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge UK

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Antonella Cristofori and Fabiana Cristofolini for their precious contribution to selection and collection of pollen samples. This study has been granted by the FONDAZIONE CASSA DI RISPARMIO DI TRENTO E ROVERETO through the CARPOL biennial (2006–2008) project. The FT-IR instrument used in the present work was acquired by Dipartimento di Informatica-Università degli Studi di Verona with the financial support of Fondazione Cariverona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dell’Anna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell’Anna, R., Lazzeri, P., Frisanco, M. et al. Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal Bioanal Chem 394, 1443–1452 (2009). https://doi.org/10.1007/s00216-009-2794-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2794-9

Keywords

Navigation