Skip to main content
Log in

Use of polyclonal antibodies to ochratoxin A with a quartz–crystal microbalance for developing real-time mycotoxin piezoelectric immunosensors

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A piezoelectric immunosensor was tested for ochratoxin A (OTA) mycotoxin detection through the immobilization of OTA–bovine serum albumin (OTA–BSA) conjugate on gold-coated quartz crystals (AT-cut/5 MHz). Immunoassays were performed in a flow-injection system through frequency decreases in a quartz–crystal microbalance (QCM) because of a mass increasing during immunoreaction with anti-OTA antibodies. Three immobilization procedures for OTA–BSA (direct adsorption and covalent attachment to two alkane thiol self-assembled monolayers) were characterized with QCM in real time. Covalent attachment of the OTA–BSA conjugates through gold nanoparticles was also tested for amplifying the signal. Binding of the excess of antibodies to the immobilized OTA in an indirect competitive analysis decreased linearly the resonant frequency in the range of the OTA concentration from 10 to 128 ng/mL, with a detection limit of 8 ng/mL (signal/noise ratio of 3). A pepsin 2 mg/mL (pH = 2.1) solution was used to release antigen–antibody complexes, regenerating the biorecognition surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bayman P, Baker JL (2006) Mycopathol 16:215–223

    Article  Google Scholar 

  2. Pfohl-Leszkowicz A, Manderville RA (2007) Mol Nut Food Res 51:61–99

    Article  CAS  Google Scholar 

  3. Cavin C, Delatour T, Marin-Kuan M, Holzhauser D, Higgins L, Bezencon C, Guignard G, Junod S, Richoz-Payot J, Gremaud E, Hayes JD, Nestler S, Mantle P, Schilter B (2007) Toxicol Sci 96:30–39

    Article  CAS  Google Scholar 

  4. Commission Directive 2005/5/EC of 26 January 2005, Official Journal of the European Union, 29 January 2005, L 27/38 to L 27/40 Available at: http://eur-lexeuropaeu/LexUriServ/LexUriServdo?uri = OJ:L:2005:027:0038:0040:EN:PDF

  5. Commission Regulation (EC) N° 123/2005 of 26 January 2005, Official Journal of the European Union, 28 January 2005, L 25/3 to L 25/5 Available at: http://eur-lexeuropaeu/LexUriServ/LexUriServdo?uri = OJ:L:2005:025:0003:0005:EN:PDF

  6. Monaci L, Palmisano F (2004) Anal Bioanal Chem 378:96–103

    Article  CAS  Google Scholar 

  7. Blesa J, Soriano JM, Molto JC, Manes J (2006) Crit Rev Food Sci Nutr 46:473–478

    Article  CAS  Google Scholar 

  8. Aresta A, Vatinno R, Palmisano F, Zambonin CG (2006) J Chromatogr A 1115:196–201

    Article  CAS  Google Scholar 

  9. Varelis P, Leong SLL, Hocking A, Giannikopoulos G (2006) Food Addit Contam 23:1308–1315

    Article  CAS  Google Scholar 

  10. Chung SWC, Kwong KP (2007) J AOAC Int 90:773–777

    CAS  Google Scholar 

  11. Barricelli M, Schmidt K, Boerner B (2007) Dtsch Lebensm-Rundsch 103:1–3

    CAS  Google Scholar 

  12. Ventura M, Guillen D, Anaya I, Broto-Puig F, Lliberia JL, Agut M, Comellas L (2006) Rapid Commun Mass Spectrom 20:3199–3204

    Article  CAS  Google Scholar 

  13. Yu FY, Chi TF, Liu BH, Su CC (2005) J Agric Food Chem 53:6947–6953

    Article  CAS  Google Scholar 

  14. Alarcón SA, Palleschi G, Compagnone D, Pascale M, Visconti A, Barna-Vetró I (2006) Talanta, 69:1031–1037

    Article  Google Scholar 

  15. Huang B, Tao WY, Shi J, Tang LH, Jin J (2006) Arch Toxicol 80:481–485

    Article  CAS  Google Scholar 

  16. Saha D, Acharya D, Roy D, Shrestha D, Dhar TK (2007) Anal Chim Acta 584:343–349

    Article  CAS  Google Scholar 

  17. Zheng ZM, Hanneken J, Houchins D, King RS, Lee P, Richard JL (2005) Mycopathol 159:265–272

    Article  CAS  Google Scholar 

  18. Goryacheva IY, Basova EY, Van Peteghem C, Eremin SA, Pussemier L, Motte JC, De-Saeger S (2008) Analytical and Bioanal Chem 390:723–727

    Article  CAS  Google Scholar 

  19. Ricci F, Volpe G, Micheli L, Palleschi G (2007) Anal Chim Acta 605:111–129

    Article  CAS  Google Scholar 

  20. Adanyi N, Levkovets IA, Rodriguez-Gil S, Ronald A, Varadi M, Szendro I (2007) Biosens Bioelectron 22:797–802

    Article  CAS  Google Scholar 

  21. Radi AE, Muñoz-Berbel X, Lates V, Marty JL (2009) Biosens Bioelectron 24:1888–1892

    Google Scholar 

  22. Ermolaeva TN, Kalmykova EN (2006) Uspekhi Khimii - Russ Chem Rev 75:297–409

    Google Scholar 

  23. Wang K, Jiang DC, Liu BH, Zhang S, Lu TP, Kong JL (2005) Chin J Anal Chem 33:411–416

    CAS  Google Scholar 

  24. Janshoff A, Galla HJ, Steinem C (2000) Angew Chem Int Ed 39:4004–4032

    Article  CAS  Google Scholar 

  25. Marx KA (2003) Biomacromolecules 4:1099–1120

    Article  CAS  Google Scholar 

  26. Marquette CA, Blum LJ (2006) Biosens Bioelectron 21:1424–1433

    Article  CAS  Google Scholar 

  27. Tsai WC, Hsieh CK (2007) Anal Lett 40:1979–1991

    Article  CAS  Google Scholar 

  28. Wang L, Gan XX (2009) Bioprocess Biosyst Eng 32:109–116

    Article  CAS  Google Scholar 

  29. Hoogvliet JC, Dijksma M, Kamp B, van-Bennekom WP (2000) Anall Chem 72:2016–2021

    Article  CAS  Google Scholar 

  30. Vatankhah G, Lessard J, Jerkiewicz G, Zolfaghari A, Conway BE (2003) Electrochim Acta 48:1613–1622

    Article  CAS  Google Scholar 

  31. Lin Z, Ward MD (1995) Anal Chem 67:685–693

    Article  CAS  Google Scholar 

  32. Wang J, Frostman LM, Ward MD (1992) J Phys Chem 96:5224–5228

    Article  CAS  Google Scholar 

  33. Schlenoff JB, Li M, Ly H (1995) J Am Chem Soc 117:12528–12536

    Article  CAS  Google Scholar 

  34. Mendes RK, Carvalhal RF, Kubota LT (2008) J Electroanal Chem 612:164–172

    Article  CAS  Google Scholar 

  35. Anzai J, Guo B, Osa T (1996) Bioelectrochem Bioenerg 40:35–40

    Article  CAS  Google Scholar 

  36. Shankaran DR, Gobi KVA, Miura N (2007) Sens Actuators B Chem 121:158–177

    Article  Google Scholar 

  37. Tang DQ, Zhang DJ, Tang DY, Ai H (2006) J Immunolog Meth 316:144–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financed by the Aragon Government (Science, Technology and University Department) with project PM 027/2007. We also thank ACP Company (Aragonesa de Componentes Pasivos S.A., Tarazona, Spain) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, J.C., Duato, P., Bonel, L. et al. Use of polyclonal antibodies to ochratoxin A with a quartz–crystal microbalance for developing real-time mycotoxin piezoelectric immunosensors. Anal Bioanal Chem 394, 575–582 (2009). https://doi.org/10.1007/s00216-009-2736-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2736-6

Keywords

Navigation