Skip to main content
Log in

Pollen-imprinted polyurethanes for QCM allergen sensors

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Molecularly imprinted polymers for detecting plant pollen were designed as artificial recognition materials for quartz crystal microbalances in the gaseous phase. Imprints of birch (diameter, 25 μm) and nettle (diameter, 15 μm) pollen can be generated by polydimethylsiloxane stamping technique as proven by atomic force microscopy. If pollen grains are able to access the cavities and thus are incorporated, the resulting sensors display Sauerbrey-like negative frequency shifts. Non-Sauerbrey behaviour can be observed as soon as pollen is prevented from entering the selective hollows: this results in grain mobility on the electrode surface leading to frequency increases. Access to the cavities is determined by the diameter ratio between pollen grains and imprints as can be revealed during cross-selectivity measurements of nettle and birch pollen imprinted layers. When the amount of pollen grains on the electrode surface exceeds the number of available imprints, the excess particles move freely, resulting in positive, non-Sauerbrey frequency shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnau A (2008) Sensors 8:370–411

    Article  Google Scholar 

  2. O’Sullivan CK, Guilbault GG (1999) Biosens and Bioelectron 14:663–670

    Article  Google Scholar 

  3. Pejcic B, Eadington P, Ross A (2007) Environ Sci and Technol 41:6333–6342

    Article  CAS  Google Scholar 

  4. Lieberzeit PA, Dickert FL (2007) Anal and Bioanal Chemistry 387:237–247

    Article  CAS  Google Scholar 

  5. Sauerbrey G (1959) Z Phys 155:206–222

    Article  CAS  Google Scholar 

  6. Marx KA (2003) Biomacromolecules 4:1099–1120

    Article  CAS  Google Scholar 

  7. Davis F, Higson SPJ (2005) Biosens Bioelectron 21:1–20

    Article  CAS  Google Scholar 

  8. Lieberzeit PA, Afzal A, Podlipna D, Krassnig S, Blumenstock H, Dickert FL (2007) Sens Actuators B 126:153–158

    Article  Google Scholar 

  9. Ye L, Haupt K (2004) Anal Bioanal Chem 378:1887–1897

    Article  CAS  Google Scholar 

  10. Belmont AS, Jaeger S, Knopp D, Niessner R, Gauglitz G, Haupt K (2007) Biosens Bioelectron 12:3267–3272

    Article  Google Scholar 

  11. Alexander C, Vulfson EN (1997) Adv Mater 9:751–755

    Article  CAS  Google Scholar 

  12. Wink TH, Van Zuilen SJ, Bult A, Van Bennekom WP (1997) Analyst 122:43R–50R

    Article  CAS  Google Scholar 

  13. Lieberzeit PA, Glanznig G, Jenik M, Gazda-Miarecka S, Dickert FL, Leidl A (2005) Sensors 5:509–518

    Article  CAS  Google Scholar 

  14. Wiermann R, Gubatz S (1992) Int Rev Cytol 140:35–72

    Article  CAS  Google Scholar 

  15. Scott RJ (1994) Molecular and cellular aspects of plant reproduction. Cambridge University Press

  16. Ahlers F, Thom I, Lambert J, Kuckuk R, Wiermann R (1999) Phytochem 50:1095–1098

    Article  CAS  Google Scholar 

  17. Jungfernmann C, Ahlers F, Grote M, Gubatz S, Steuernagel S et al (1997) J Plant Physiol 151:513–519

    Google Scholar 

  18. Espelie KE, Loewus FA, Pugmire RJ, Woolfenden WR, Baldi BG, Given PH (1989) Phytochem 28:751–753

    Article  CAS  Google Scholar 

  19. Guilford WJ, Schneider DM, Labowitz J, Opella SJ (1988) Plant Physiol 86:134–136

    Article  CAS  Google Scholar 

  20. Wilmesmeier S, Steuernagel S, Wiermann R (1993) Z Naturforsch 48c:697–701

    Google Scholar 

  21. Fritsch R, Bohle B, Vollmann U, Wiedermann U, Jahn-Schmid B, Krebitz M, Breiteneder H, Kraft D, Ebner C (1998) J Allergy and Clin Immunol 102:679–686

    Article  CAS  Google Scholar 

  22. Dickert FL, Hayden O (2002) Anal Chem 74:1302–130

    Article  CAS  Google Scholar 

  23. Hayden O, Mann KJ, Krassnig S, Dickert FL (2006) Angew Chem Int Ed 45:2626–2629

    Article  CAS  Google Scholar 

  24. Lieberzeit PA, Schirk C, Glanznig G, Gazda-Miarecka S, Bindeus R, Nannen H, Kauling J, Dickert FL (2004) Superlattices Microstruct 36:133–142

    Article  CAS  Google Scholar 

  25. McHale G, Lucklum R, Newton MI, Cowen JA (2000) J Appl Phys 88:7304–7312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz L. Dickert.

Additional information

Dedicated to Prof. Dr. Ernst Kenndler on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenik, M., Seifner, A., Lieberzeit, P. et al. Pollen-imprinted polyurethanes for QCM allergen sensors. Anal Bioanal Chem 394, 523–528 (2009). https://doi.org/10.1007/s00216-009-2718-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2718-8

Keywords

Navigation