Skip to main content
Log in

Monitoring of vesicular exocytosis from single cells using micrometer and nanometer-sized electrochemical sensors

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Communication between cells by release of specific chemical messengers via exocytosis plays crucial roles in biological process. Electrochemical detection based on ultramicroelectrodes (UMEs) has become one of the most powerful techniques in real-time monitoring of an extremely small number of released molecules during very short time scales, owing to its intrinsic advantages such as fast response, excellent sensitivity, and high spatiotemporal resolution. Great successes have been achieved in the use of UME methods to obtain quantitative and kinetic information about released chemical messengers and to reveal the molecular mechanism in vesicular exocytosis. In this paper, we review recent developments in monitoring exocytosis by use of UMEs-electrochemical-based techniques including electrochemical detection using micrometer and nanometer-sized sensors, scanning electrochemical microscopy (SECM), and UMEs implemented in lab-on-a-chip (LOC) microsystems. These advances are of great significance in obtaining a better understanding of vesicular exocytosis and chemical communications between cells, and will facilitate developments in many fields, including analytical chemistry, biological science, and medicine. Furthermore, future developments in electrochemical probing of exocytosis are also proposed.

In this paper, we review recent developments in monitoring the exocytosis by use of UMEs-electrochemical-based techniques including electrochemical detection using micrometer and nanometer-sized sensors, Scanning Electrochemical Microscopy (SECM) and UMEs implemented in lab-on-a-chip (LOC) microsystems. These advances are of great significance in obtaining a better understanding of vesicular exocytosis and chemical communications between cells, and will facilitate developments in many fields including analytical chemistry, biological science and medicine. Furthermore, future developments in electrochemical probing of exocytosis are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kissinger PT, Hart JB, Adams RN (1973) Brain Res 55:209–213

    CAS  Google Scholar 

  2. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ, Viveros OH (1991) Proc Natl Acad Sci USA 88:10754–10758

    CAS  Google Scholar 

  3. Amatore C, Arbault S, Bruce D, de Oliveira P, Erard M, Vuillaume M (2001) Chem Eur J 7:4171–4179

    CAS  Google Scholar 

  4. Amatore C, Arbault S, Guille M, Lemaître F (2008) Chem Rev 108:2585–2621

    CAS  Google Scholar 

  5. Bard AJ, Fan FRF, Kwak J, Lev O (1989) Anal Chem 61:132–138

    CAS  Google Scholar 

  6. Mosharov EV, Sulzer D (2005) Nat Meth 2:651–658

    CAS  Google Scholar 

  7. Wightman RM (2006) Science 311:1570–1574

    CAS  Google Scholar 

  8. Schulte A, Schuhmann W (2007) Angew Chem Int Ed 46:8760–8777

    CAS  Google Scholar 

  9. Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Chem Rev 108:2554–2584

    CAS  Google Scholar 

  10. Amatore C, Arbault S, Bruce D, de Oliveira P, Erard M, Vuillaume M (2000) Faraday Discuss 116:319–333

    CAS  Google Scholar 

  11. Amatore C, Arbault S, Bouton C, Coffi K, Drapier JC, Ghandour H, Tong YH (2006) ChemBioChem 7:653–661

    CAS  Google Scholar 

  12. Amatore C, Arbault S, Bouton C, Drapier JC, Ghandour H, Koh ACW (2008) ChemBioChem 9:1472–1480

    CAS  Google Scholar 

  13. Kelly RS, Wightman RM (1986) Anal Chim Acta 187:79–87

    CAS  Google Scholar 

  14. Chow RH, Von Rüden L, Neher E (1992) Nature 356:60–63

    CAS  Google Scholar 

  15. Schulte A, Chow RH (1996) Anal Chem 68:3054–3058

    CAS  Google Scholar 

  16. Lambie BA, Orwar O, Weber SG (2006) Anal Chem 78:5165–5171

    CAS  Google Scholar 

  17. Hochstetler SE, Puopolo M, Gustincich S, Raviola E, Wightman RM (2000) Anal Chem 72:489–496

    CAS  Google Scholar 

  18. Huang WH, Pang DW, Tong H, Wang ZL, Cheng JK (2001) Anal Chem 73:1048–1052

    CAS  Google Scholar 

  19. Du FY, Huang WH, Shi YX, Wang ZL, Cheng JK (2008) Biosens Bioelectron 24:415–421

    CAS  Google Scholar 

  20. Baur JE, Kristensen EW, May LJ, Wiedemann DJ, Wightman RM (1988) Anal Chem 60:1268–1272

    CAS  Google Scholar 

  21. Arbault S, Pantano P, Jankowski JA, Vuillaume M, Amatore C (1995) Anal Chem 67:3382–3390

    CAS  Google Scholar 

  22. Kennedy RT, Huang L, Atkinson MA, Dush P (1993) Anal Chem 65:1882–1887

    CAS  Google Scholar 

  23. Huang L, Shen H, Atkinson MA, Kennedy RT (1995) Proc Natl Acad Sci USA 92:9608–9612

    CAS  Google Scholar 

  24. Kennedy RT, Huang L, Aspinwall CA (1996) J Am Chem Soc 118:1795–1796

    CAS  Google Scholar 

  25. Aspinwall CA, Huang L, Lakey JRT, Kennedy RT (1999) Anal Chem 71:5551–5556

    CAS  Google Scholar 

  26. Ciolkowski EL, Cooper BR, Jankowski JA, Jorgenson JW, Wightman RM (1992) J Am Chem Soc 114:2815–2821

    CAS  Google Scholar 

  27. Piehl K, Schroeder TJ, Wightman RM (1994) Anal Chem 66:4532–4537

    Google Scholar 

  28. Pihel K, Hsieh S, Jorgenson JW, Wightman RM (1995) Anal Chem 67:4514–4521

    CAS  Google Scholar 

  29. Kozminski KD, Gutman DA, Davila V, Sulzer D, Ewing AG (1998) Anal Chem 70:3123–3130

    CAS  Google Scholar 

  30. Schroeder TJ, Jankowski JA, Kawagoe KT, Wightman RM, Lefrou C, Amatore C (1992) Anal Chem 64:3077–3083

    CAS  Google Scholar 

  31. Jankowski JA, Schroeder TJ, Ciolkowski EL, Wightman RM (1993) J Biol Chem 268:14694–14700

    CAS  Google Scholar 

  32. Haller M, Heinemann C, Chow RH, Heidelberger R, Neher E (1998) Biophys J 74:2100–2113

    CAS  Google Scholar 

  33. Burgoyne RD, Morgan A (2003) Physiol Rev 83:581–632

    CAS  Google Scholar 

  34. Neher E, Marty A (1982) Proc Natl Acad Sci USA 79:6712–6716

    CAS  Google Scholar 

  35. Gillis KD (1995) In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum, pp 155–198

  36. Steyer JA, Horstmann A, Almers W (1997) Nature 388:474–478

    CAS  Google Scholar 

  37. Steyer JA, Almers W (2001) Nat Rev Mol Cell Bio 2:268–276

    CAS  Google Scholar 

  38. Hell SW (2007) Science 316:1153–1158

    CAS  Google Scholar 

  39. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Science 320:246–249

    CAS  Google Scholar 

  40. Chow RH, Klingauf J, Neher E (1994) Proc Natl Acad Sci USA 91:12765–12769

    CAS  Google Scholar 

  41. Amatore C, Bouret Y, Travis ER, Wightman RM (2000) Biochimie 82:481–496

    CAS  Google Scholar 

  42. Colliver TL, Hess EJ, Ewing AG (2001) J Neurosci Methods 105:95–103

    CAS  Google Scholar 

  43. Amatore C, Arbault S, Bonifas I, Bouret Y, Erard M, Guille M (2003) ChemPhysChem 4:147–154

    CAS  Google Scholar 

  44. Nagy G, Reim K, Matti U, Brose N, Binz T, Rettig J, Neher E, Sørensen JB (2004) Neuron 41:351–365

    Google Scholar 

  45. Chen XK, Wang LC, Zhou Y, Cai Q, Prakriya M, Duan KL, Sheng ZH, Lingle C, Zhou Z (2005) Nat Neurosci 8:1160–1168

    CAS  Google Scholar 

  46. Haynes CL, Buhler LA, Wightman RM (2006) Biophys Chem 123:20–24

    CAS  Google Scholar 

  47. Chen TK, Luo G, Ewing AG (1994) Anal Chem 66:3031–3035

    CAS  Google Scholar 

  48. Westerink RHS, de Groot A, Vijverberg HPM (2000) Biochem Biophys Res Commun 270:625–630

    CAS  Google Scholar 

  49. Sombers LA, Hanchar HJ, Colliver TL, Wittenberg N, Cans A, Arbault S, Amatore C, Ewing AG (2004) J Neurosci 24:303–309

    CAS  Google Scholar 

  50. Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P, Quazi AZ, Savalle M, Nemani V, Chaudhry FA, Edwards RH, Stefanis L, Sulzer D (2006) J Neurosci 26:11915–11922

    CAS  Google Scholar 

  51. Migheli R, Puggioni G, Dedola S, Rocchitta G, Calia G, Bazzu G, Esposito G, Lowry JP, O’Neill RD, Desole MS, Miele E, Serra PA (2008) Anal Biochem 380:323–330

    CAS  Google Scholar 

  52. Westerink RHS, Ewing AG (2008) Acta Physiol 192:273–285

    CAS  Google Scholar 

  53. Pihel K, Hsieh S, Jorgenson JW, Wightman RM (1998) Biochemistry 37:1046–1052

    CAS  Google Scholar 

  54. Travis ER, Wang YM, Michael DJ, Caron MG, Wightman RM (2000) Proc Natl Acad Sci USA 97:162–167

    CAS  Google Scholar 

  55. Marquis BJ, McFarland AD, Braun KL, Haynes CL (2008) Anal Chem 80:3431–3437

    CAS  Google Scholar 

  56. Paras CD, Kennedy RT (1995) Anal Chem 67:3633–3637

    CAS  Google Scholar 

  57. Paras CD, Kennedy RT (1997) Electroanalysis 9:203–208

    CAS  Google Scholar 

  58. Bruns D, Jahn R (1995) Nature 377:62–65

    CAS  Google Scholar 

  59. Bruns D, Riedel D, Klingauf J, Jahn R (2000) Neuron 28:205–220

    CAS  Google Scholar 

  60. Bruns D (2004) Methods 33:312–321

    CAS  Google Scholar 

  61. Chen G, Gutman DA, Zerby SE, Ewing AG (1996) Brain Res 733:119–124

    CAS  Google Scholar 

  62. Anderson BB, Chen G, Gutman DA, Ewing AG (1999) J Neurosci Methods 88:153–161

    CAS  Google Scholar 

  63. Anderson BB, Ewing AG (1999) J Pharm Biomed Anal 19:15–32

    CAS  Google Scholar 

  64. Marinesco S, Carew TJ (2002) J Neurosci 22:2299–2312

    CAS  Google Scholar 

  65. Gillis MA, Anctil M (2001) J Neurochem 76:1774–1784

    CAS  Google Scholar 

  66. Zhou Z, Misler S (1995) Proc Natl Acad Sci USA 192:6938–6942

    Google Scholar 

  67. Jaffe EH, Marty A, Schulte A, Chow RH (1998) J Neurosci 18:3548–3553

    CAS  Google Scholar 

  68. Pothos EN, Davila V, Sulzer D (1998) J Neurosci 18:4106–4118

    CAS  Google Scholar 

  69. Staal RGW, Mosharov EV, Sulzer D (2004) Nat Neurosci 7:341–346

    CAS  Google Scholar 

  70. Huang HP, Wang SR, Yao W, Zhang C, Zhou Y, Chen XW, Zhang B, Xiong W, Wang LY, Zheng LH, Landry M, Hökfelt T, Xu ZQD, Zhou Z (2007) Proc Natl Acad Sci USA 104:1401–1406

    CAS  Google Scholar 

  71. Cans A, Wittenberg N, Eves D, Karlsson R, Karlsson A, Orwar O, Ewing AG (2003) Anal Chem 75:4168–4175

    CAS  Google Scholar 

  72. Cans A, Wittenberg N, Eves D, Karlsson R, Sombers L, Karlsson M, Orwar O, Ewing AG (2003) Proc Natl Acad Sci USA 100:400–404

    CAS  Google Scholar 

  73. Wightman RM, Schroeder TJ, Finnegan JM, Ciolkowski EL, Pihel K (1995) Biophys J 68:383–390

    CAS  Google Scholar 

  74. Wightman RM, Haynes CL (2004) Nat Neurosci 7:321–322

    CAS  Google Scholar 

  75. Gundelfinger ED, Kessels MM, Qualmann B (2003) Nat Rev Mol Cell Bio 4:127–139

    CAS  Google Scholar 

  76. Rizo J, Südhof TC (2002) Nat Rev Neurosci 3:641–653

    CAS  Google Scholar 

  77. Gil A, Viniegra S, Gutierrez LM (1998) Eur J Neurosci 10:3369–3378

    CAS  Google Scholar 

  78. Graham ME, Fisher RJ, Burgoyne RD (2000) Biochimie 82:469–479

    CAS  Google Scholar 

  79. Criado M, Gil A, Viniegra S, Gutierrez LM (1999) Proc Natl Acad Sci USA 96:7256–7261

    CAS  Google Scholar 

  80. Amatore C, Arbault S, Guille M, Lemaître F (2007) ChemPhysChem 8:1597–1605

    CAS  Google Scholar 

  81. Jankowski JA, Finnegan JM, Wightman RM (1994) J Neurochem 63:1739–1747

    Article  CAS  Google Scholar 

  82. Schroeder TJ, Borges R, Finnegan JM, Pihel K, Amatore C, Wightman RM (1996) Biophys. J. 70:1061–1068

    CAS  Google Scholar 

  83. Borges R, Travis ER, Hochstetler SE, Wightman RM (1997) J Biol Chem 272:8325–8331

    CAS  Google Scholar 

  84. Amatore C, Arbault S, Bonifas I, Lemaître F, Verchier Y (2007) ChemPhysChem 8:578–585

    CAS  Google Scholar 

  85. Aspinwall CA, Brooks SA, Kennedy RT, Lakey JRT (1997) J Biol Chem 272:31308–31314

    CAS  Google Scholar 

  86. Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M (1997) Nature 389:509–512

    CAS  Google Scholar 

  87. Dernick G, Gong L, Tabares L, Alvarez de Toledo G, Lindau M (2005) Nat Meth 2:699–708

    CAS  Google Scholar 

  88. Alés E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez de Toledo G (1999) Nat Cell Biol 1:40–44

    Google Scholar 

  89. Tabares L, Lindau M, Alvarez de Toledo G (2003) Biochem Soc Trans 31:837–841

    CAS  Google Scholar 

  90. Mosharov EV, Gong L, Khanna B, Sulzer D, Lindau M (2003) J Neurosci 23:5835–5845

    CAS  Google Scholar 

  91. Strein TG, Ewing AG (1992) Anal Chem 64:1368–1373

    CAS  Google Scholar 

  92. Zhang W, Bard AJ (2006) Anal Chem 78:726–733

    Google Scholar 

  93. Tel-Vered R, Walsh DA, Mehrgardi MA, Bard AJ (2006) Anal Chem 78:6959–6966

    CAS  Google Scholar 

  94. Schulte A, Chow RH (1998) Anal Chem 70:985–990

    CAS  Google Scholar 

  95. Abbou J, Demaille C, Druet M, Moiroux J (2002) Anal Chem 74:6355–6363

    CAS  Google Scholar 

  96. Chen S, Kucernak A (2002) Electrochem Commun 4:80–85

    CAS  Google Scholar 

  97. Hermans A, Wightman RM (2006) Langmuir 22:10348–10353

    CAS  Google Scholar 

  98. Zhang B, Galusha J, Shiozawa PG, Wang G, Bergren AJ, Jones RM, White RJ, Ervin EN, Cauley CC, White HS (2007) Anal Chem 79:4778–4787

    CAS  Google Scholar 

  99. Li ZY, Zhou W, Wu ZX, Zhang RY, Xu T (2009) Biosens Bioelectron 24:1358–1364

    CAS  Google Scholar 

  100. Zhang X, Zhang W, Zhou X, Ogorevc B (1996) Anal Chem 68:3338–3343

    CAS  Google Scholar 

  101. Shao Y, Mirkin MV, Fish G, Kokotov S, Palanker D, Lewis A (1997) Anal Chem 69:1627–1634

    CAS  Google Scholar 

  102. Sun P, Mirkin MV (2006) Anal Chem 78:6526–6534

    CAS  Google Scholar 

  103. Sun P, Laforge FO, Abeyweera TP, Rotenberg SA, Carpino J, Mirkin MV (2008) Proc Natl Acad Sci USA 105:443–448

    CAS  Google Scholar 

  104. Yum K, Cho HN, Hu J, Yu MF (2007) NANO 1:440–448

    CAS  Google Scholar 

  105. Schroeder TJ, Jankowski JA, Senyshyn J, Holz RW, Wightman RM (1994) J Biol Chem 269:17215–17220

    CAS  Google Scholar 

  106. Robinson IM, Finnegan JM, Monck JR, Wightman RM, Fernandez JM (1995) Proc Natl Acad Sci USA 92:2474–2478

    CAS  Google Scholar 

  107. Paras C, Qian W, Lakey J, Tan W, Kennedy RT (2000) Cell Biochem Biophys 33:227–240

    CAS  Google Scholar 

  108. Wu WZ, Huang WH, Wang W, Wang ZL, Cheng JK, Xu T, Zhang RY, Chen Y, Liu T (2005) J Am Chem Soc 127:8914–8915

    CAS  Google Scholar 

  109. Lee C, Kwak J, Bard AJ (1990) Proc Natl Acad Sci USA 87:1740–1743

    CAS  Google Scholar 

  110. Tsionsky M, Gardon ZG, Bard AJ, Jackson RB (1997) Plant Physiol 113:895–901

    CAS  Google Scholar 

  111. Yasukawa Y, Kaya K, Matsue T (1999) Anal Chem 71:4637–4641

    CAS  Google Scholar 

  112. Yasukawa T, Kaya K, Matsue T (1999) Chem Lett 28:975–976

    Google Scholar 

  113. Yasukawa T, Kondo Y, Uchida I, Matsue T (1998) Chem Lett 27:767–768

    Google Scholar 

  114. Nishizawa M, Takoh K, Matsue T (2002) Langmuir 18:3645–3649

    CAS  Google Scholar 

  115. Takii Y, Takoh K, Nishizawa M, Matsue T (2003) Electrochim Acta 48:3381–3385

    CAS  Google Scholar 

  116. Guo J, Amemiya S (2005) Anal Chem 77:2147–2156

    CAS  Google Scholar 

  117. Ciobanu M, Taylor Jr DE, Wilburn JP, Cliffel DE (2008) Anal Chem 80:2717–2727

    CAS  Google Scholar 

  118. Liebetrau JM, Miller HM, Baur JE, Takacs SA, Anupunpisit V, Garris PA, Wipf DO (2003) Anal Chem 75:563–571

    CAS  Google Scholar 

  119. Kurulugama RT, Wipf DO, Takacs SA, Pongmayteegul S, Garris PA, Baur JE (2005) Anal Chem 77:1111–1117

    CAS  Google Scholar 

  120. Wang W, Xiong Y, Du FY, Huang WH, Wu WZ, Wang ZL, Cheng JK, Yang YF (2007) Analyst 132:515–518

    CAS  Google Scholar 

  121. Hengstenberg A, Blöchl A, Dietzel ID, Schuhmann W (2001) Angew Chem Int Ed 40:905–908

    CAS  Google Scholar 

  122. Pailleret A, Oni J, Reiter S, Isik S, Etienne M, Bedioui F, Schuhmann W (2003) Electrochem Commun 5:847–852

    CAS  Google Scholar 

  123. Bauermann LP, Schuhmann W, Schulte A (2004) Phys Chem Chem Phys 6:4003–4008

    Google Scholar 

  124. Torisawa Y, Ohara N, Nagamine K, Kasai S, Yasukawa T, Shiku H, Matsue T (2006) Anal Chem 78:7625–7631

    CAS  Google Scholar 

  125. Takahashi Y, Hirano Y, Yasukawa T, Shiku H, Yamada H, Matsue T (2006) Langmuir 22:10299–10306

    CAS  Google Scholar 

  126. Zhang B, Adams KL, Luber SJ, Eves DJ, Heien ML, Ewing AG (2008) Anal Chem 80:1394–1400

    CAS  Google Scholar 

  127. Chen P, Xu B, Tokranova N, Feng X, Castracane J, Gillis KD (2003) Anal Chem 75:518–524

    CAS  Google Scholar 

  128. Cui HF, Ye JS, Chen Y, Chong SC, Liu X, Lim TM, She FS (2006) Sens Actuators B 115:634–641

    Google Scholar 

  129. Cui HF, Ye JS, Chen Y, Chong SC, She FS (2006) Anal Chem 78:6347–6355

    CAS  Google Scholar 

  130. Spégel C, Heiskanen A, Acklid J, Wolff A, Taboryski R, Emnéus J, Ruzgas T (2007) Electroanalysis 19:263–271

    Google Scholar 

  131. Spégel C, Heiskanen A, Pedersen S, Emnéus J, Ruzgas T, Taboryski R (2008) Lab Chip 8:323–329

    Google Scholar 

  132. Dias AF, Dernick G, Valero V, Yong MG, James CD, Craighead HG, Lindau M (2002) Nanotechnology 13:285–289

    CAS  Google Scholar 

  133. Hafez I, Kisler K, Berberian K, Dernick G, Valero V, Yong MG, Craighead HG, Lindau M (2005) Proc Natl Acad Sci USA 102:13879–13884

    CAS  Google Scholar 

  134. Wang K, Fishman HA, Dai H, Harris JS (2006) Nano Lett 6:2043–2048

    CAS  Google Scholar 

  135. Amatore C, Arbault S, Chen Y, Crozatier C, Lemaître F, Verchier Y (2006) Angew Chem Int Ed 45:4000–4003

    CAS  Google Scholar 

  136. Amatore C, Arbault S, Lemaître F, Verchier Y (2007) Biophys Chem 127:165–171

    CAS  Google Scholar 

  137. Sun X, Gillis KD (2006) Anal Chem 78:2521–2525

    CAS  Google Scholar 

  138. Chen X, Gao Y, Hossain M, Gangopadhyay S, Gillis KD (2008) Lab Chip 8:161–169

    CAS  Google Scholar 

  139. Huang WH, Cheng W, Pang DW, Wang ZL, Cheng JK, Cui DF (2004) Anal Chem 76:483–488

    CAS  Google Scholar 

  140. Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM (2006) Lab Chip 6:1424–1431

    CAS  Google Scholar 

  141. Amatore C, Arbault S, Chen Y, Crozatier C, Tapsoba I (2007) Lab Chip 7:233–238

    CAS  Google Scholar 

  142. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill, New York, p 19

    Google Scholar 

  143. Ionescu-Zanetti C, Shaw RM, Seo J, Jan YN, Jan LY, Lee LP (2005) Proc Natl Acad Sci USA 102:9112–9117

    CAS  Google Scholar 

  144. Lau AY, Hung PJ, Wu AR, Lee LP (2006) Lab Chip 6:1510–1515

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 20675060, 90717101), the Science Fund for Creative Research Groups (NSFC, no. 20621502), National Basic Research Program of China (973 Program, no. 2007CB714507), and the Fund for Distinguished Young Scholar of Hubei Province (no. 2007ABB023) and Chenguang Project for Youth of Wuhan City (no. 200850731368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hua Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Zhang, SH., Li, LM. et al. Monitoring of vesicular exocytosis from single cells using micrometer and nanometer-sized electrochemical sensors. Anal Bioanal Chem 394, 17–32 (2009). https://doi.org/10.1007/s00216-009-2703-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2703-2

Keywords

Navigation