Skip to main content
Log in

The correspondence problem for metabonomics datasets

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In metabonomics it is difficult to tell which peak is which in datasets with many samples. This is known as the correspondence problem. Data from different samples are not synchronised, i.e., the peak from one metabolite does not appear in exactly the same place in all samples. For datasets with many samples, this problem is nontrivial, because each sample contains hundreds to thousands of peaks that shift and are identified ambiguously. Statistical analysis of the data assumes that peaks from one metabolite are found in one column of a data table. For every error in the data table, the statistical analysis loses power and the risk of missing a biomarker increases. It is therefore important to solve the correspondence problem by synchronising samples and there is no method that solves it once and for all. In this review, we analyse the correspondence problem, discuss current state-of-the-art methods for synchronising samples, and predict the properties of future methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Listgarten J, Emili A (2005) Mol Cell Prot 4:419–434

    Article  CAS  Google Scholar 

  2. Vandenbogaert M, Li-Thiao-Te S, Kaltenbach HM, Zhang RX, Aittokallio T, Schwikowski B (2008) Proteomics 8:650–672

    Article  CAS  Google Scholar 

  3. Nicholson JK, Wilson ID (1989) Prog Nucl Magn Reson Spectrosc 21:449–501

    Article  CAS  Google Scholar 

  4. Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HWL, Clarke S, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ (2002) Nat Med 8:1439–1445

    Article  CAS  Google Scholar 

  5. Shockcor JP, Holmes E (2002) Curr Top Med Chem 2:35–51

    Article  CAS  Google Scholar 

  6. Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D, Sawhney S, Bamforth F, Greiner R, Li L (2008) J Chromatogr B 871:164–173

    Article  CAS  Google Scholar 

  7. Dixon SJ, Brereton RG, Soini HA, Novotny MV, Penn DJ (2006) J Chemom 20:325–340

    Article  CAS  Google Scholar 

  8. Yan S-K, Wei B-J, Lin Z-Y, Yang Y, Zhou Z-T, Zhang W-D (2008) Oral Oncol 44:477–483

    Article  CAS  Google Scholar 

  9. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Nat Rev Drug Discov 1:153–161

    Article  CAS  Google Scholar 

  10. Fan TWM, Lane AN (2008) Prog Nucl Magn Reson Spectrosc 52:69–117

    Article  CAS  Google Scholar 

  11. Idborg H (2007) Analysis of metabolites in complex biological samples using LC/MS and multivariate data analysis. PhD Thesis, Stockholm University, Stockholm

  12. Idborg-Björkman H, Edlund PO, Kvalheim OM, Schuppe-Koistinen I, Jacobsson SP (2003) Anal Chem 75:4784–4792

    Article  Google Scholar 

  13. Jonsson P, Johansson AI, Gullberg J, Trygg JAJ, Grung B, Marklund S, Sjostrom M, Antti H, Moritz T (2005) Anal Chem 77:5635–5642

    Article  CAS  Google Scholar 

  14. Åberg KM, Torgrip RJO, Kolmert J, Schuppe-Koistinen I, Lindberg J (2008) J Chromatogr A 1192:139–146

    Article  Google Scholar 

  15. Miller AJ (1990) Subset selection in regression. Chapman and Hall, London

    Google Scholar 

  16. Sun J, Schnackenberg LK, Holland RD, Schmitt TC, Cantor GH, Dragan YP, Beger RD (2008) J Chromatogr B 871:328–340

    Article  CAS  Google Scholar 

  17. De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER, De Buyzere ML, Gillebert TC, Bekaert S, Martins JC, Van Criekinge W (2008) Anal Chem 80:3783–3790

    Article  Google Scholar 

  18. Anderson PE, Reo NV, DelRaso NJ, Doom TE, Raymer ML (2008) Metabolomics 4:261–272

    Article  CAS  Google Scholar 

  19. Davis RA, Charlton AJ, Godward J, Jones SA, Harrison M, Wilson JC (2007) Chemom Intell Lab Syst 85:144–154

    Article  CAS  Google Scholar 

  20. Danielsson R, Backstrom D, Ullsten S (2006) Chemom Intell Lab Syst 84:33–39

    Article  CAS  Google Scholar 

  21. Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjostrom M, Plumb R, Granger J, Maibaum E, Nicholson JK, Holmes E, Antti H (2005) Analyst 130:701–707

    Article  CAS  Google Scholar 

  22. Csenki L, Alm E, Torgrip RJO, Aberg KM, Nord LI, Schuppe-Koistinen I, Lindberg J (2007) Anal Bioanal Chem 389:875–885

    Article  CAS  Google Scholar 

  23. Forshed J, Schuppe-Koistinen I, Jacobsson SP (2003) Anal Chim Acta 487:189–199

    Article  CAS  Google Scholar 

  24. Torgrip RJO, Aberg M, Karlberg B, Jacobsson SP (2003) J Chemom 17:573–582

    Article  CAS  Google Scholar 

  25. Prince JT, Marcotte EM (2006) Anal Chem 78:6140–6152

    Article  CAS  Google Scholar 

  26. Prakash A, Mallick P, Whiteaker J, Zhang HD, Paulovich A, Flory M, Lee H, Aebersold R, Schwikowski B (2006) Mol Cell Prot 5:423–432

    Article  CAS  Google Scholar 

  27. Luedemann A, Strassburg K, Erban A, Kopka J (2008) Bioinformatics 24:732–737

    Article  CAS  Google Scholar 

  28. Duran AL, Yang J, Wang LJ, Sumner LW (2003) Bioinformatics 19:2283–2293

    Article  CAS  Google Scholar 

  29. Tibshirani R, Hastie T, Narasimhan B, Soltys S, Shi GY, Koong A, Le QT (2004) Bioinformatics 20:3034–3044

    Article  CAS  Google Scholar 

  30. De Souza DP, Saunders EC, McConville MJ, Likic VA (2006) Bioinformatics 22:1391–1396

    Article  Google Scholar 

  31. de Groot JCW, Fiers M, van Ham R, America AHP (2008) Proteomics 8:32–36

    Article  Google Scholar 

  32. Lange E, Gropl C, Schulz-Trieglaff O, Leinenbach A, Huber C, Reinert K (2007) Bioinformatics 23:I273–I281

    Article  CAS  Google Scholar 

  33. Eilers PHC (2004) Anal Chem 76:404–411

    Article  CAS  Google Scholar 

  34. Tomasi G, van den Berg F, Andersson C (2004) J Chemom 18:231–241

    Article  CAS  Google Scholar 

  35. Palmblad M, Mills DJ, Bindschedler LV, Cramer R (2007) J Am Soc Mass Spectrom 18:1835–1843

    Article  CAS  Google Scholar 

  36. Walczak B, Wu W (2005) Chemom Intell Lab Syst 77:173–180

    CAS  Google Scholar 

  37. van Nederkassel AM, Daszykowski M, Eilers PHC, Heyden YV (2006) J Chromatogr A 1118:199–210

    Article  Google Scholar 

  38. Kassidas A, MacGregor JF, Taylor PA (1998) Aiche J 44:864–875

    Article  CAS  Google Scholar 

  39. Nielsen NPV, Carstensen JM, Smedsgaard J (1998) J Chromatogr A 805(1–2):17–35

    Article  CAS  Google Scholar 

  40. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) Anal Chem 78:779–787

    Article  CAS  Google Scholar 

  41. Kirchner M, Saussen B, Steen H, Steen JAJ, Hamprecht FA (2007) J Stat Soft 18:4

    Google Scholar 

  42. Dynamic programming. http://en.wikipedia.org/wiki/Dynamic_programming (Accessed 26 Sept 2008)

  43. Baran R, Kochi H, Saito N, Suematsu M, Soga T, Nishioka T, Robert M, Tomita M (2006) BMC Bioinformatics 7:530

  44. Christin C, Smilde AK, Hoefsloot HCJ, Suits F, Bischoff R, Horvatovich PL (2008) Anal Chem 80:7012–7021

    Article  CAS  Google Scholar 

  45. Sadygov RG, Maroto FM, Huhmer AFR (2006) Anal Chem 78:8207–8217

    Article  CAS  Google Scholar 

  46. Suits F, Lepre J, Du PC, Bischoff R, Horvatovich P (2008) Anal Chem 80:3095–3104

    Article  CAS  Google Scholar 

  47. Lee GC, Woodruff DL (2004) Anal Chim Acta 513:413–416

    Article  CAS  Google Scholar 

  48. Yao WF, Yin XY, Hu YZ (2007) J Chromatogr A 1160:254–262

    Article  CAS  Google Scholar 

  49. Fraga CG, Prazen BJ, Synovec RE (2001) Anal Chem 73:5833–5840

    Article  CAS  Google Scholar 

  50. Pierce KM, Wood LF, Wright BW, Synovec RE (2005) Anal Chem 77:7735–7743

    Article  CAS  Google Scholar 

  51. Listgarten J (2006) Analysis of sibling time series data: alignment and difference detection. University of Toronto, Toronto

    Google Scholar 

  52. Listgarten J, Neal RM, Roweis ST, Wong P, Emili A (2007) Bioinformatics 23:E198–E204

    Article  CAS  Google Scholar 

  53. Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P, May D, Eng J, Fang RH, Lin CW, Chen JZ, Goodlett D, Whiteaker J, Paulovich A, McIntosh M (2006) Bioinformatics 22:1902–1909

    Article  CAS  Google Scholar 

  54. Vorst O, de Vos CHR, Lommen A, Staps RV, Visser RGF, Bino RJ, Hall RD (2005) Metabolomics 1:169–180

    Article  CAS  Google Scholar 

  55. Fischer B, Grossmann J, Roth V, Gruissem W, Baginsky S, Buhmann JM (2006) Bioinformatics 22:E132–E140

    Article  CAS  Google Scholar 

  56. Fischer B, Roth V, Buhmann JM (2007) BMC Bioinformatics 8(Suppl 10):S4

  57. Jaffe JD, Mani DR, Leptos KC, Church GM, Gillette MA, Carr SA (2006) Mol Cell Prot 5:1927–1941

    Article  CAS  Google Scholar 

  58. Åberg KM, Torgrip RJO, Jacobsson SP (2004) J Chemom 18:465–473

    Article  Google Scholar 

  59. Sauve AC, Speed TP (2004) Normalization, baseline correction and alignment of high-throughput mass spectrometry data. Proc Gensips

  60. Toppo S, Roveri A, Vitale MP, Zaccarin M, Serain E, Apostolidis E, Gion M, Maiorino M, Ursini F (2008) Proteomics 8:250–253

    Article  CAS  Google Scholar 

  61. Johnson KJ, Wright BW, Jarman KH, Synovec RE (2003) J Chromatogr A 996:141–155

    Article  CAS  Google Scholar 

  62. Chui H (2001) Non-rigid point matching: algorithms, extensions and applications. PhD Thesis, Yale University, New Haven

    Google Scholar 

  63. Nordström A, O’Maille G, Qin C, Siuzdak G (2006) Anal Chem 78:3289–3295

    Article  Google Scholar 

  64. Skov T, van den Berg F, Tomasi G, Bro R (2006) J Chemom 20:484–497

    Article  CAS  Google Scholar 

  65. Wu W, Daszykowski M, Walczak B, Sweatman BC, Connor SC, Haseldeo JN, Crowther DJ, Gill RW, Lutz MW (2006) J Chem Inf Model 46:863–875

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to AstraZeneca for financing and for access to metabonomics data from LC–MS and NMR. Helena Idborg is acknowledged for supplying the data for Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Magnus Åberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åberg, K.M., Alm, E. & Torgrip, R.J.O. The correspondence problem for metabonomics datasets. Anal Bioanal Chem 394, 151–162 (2009). https://doi.org/10.1007/s00216-009-2628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2628-9

Keywords

Navigation