Skip to main content
Log in

Towards biosensors based on conducting polymer nanowires

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report the electrochemical deposition of poly(pyrrolepropylic acid) nanowires, their covalent modification with antibodies and their conversion into potential functional sensor devices. The nanowires and the devices were characterised by optical microscopy, fluorescence microscopy, electron microscopy and electrical measurements. Fluorescence images, current–voltage (IV) profiles and real-time sensing measurements demonstrated a rapid and highly sensitive and selective detection of human serum albumin (HSA), a substance that has been used to diagnose incipient renal disease. The detection is based on the selective binding of HSA onto anti-HSA that is covalently attached to the nanowires. The binding changes the electrical properties of the nanowires thus enabling the real-time detection. Whilst the utility of the research was demonstrated for protein binding/detection, the technology could easily be designed for the detection of other analytes by the modification of polymer nanowires with other analyte-specific molecules/biomolecules. Therefore, the technology has the potential to positively impact broad analytical applications in the biomedical, environmental and other sectors.

Real-time dynamic current response on sequential exposure of buffer, bovine serum albumin (BSA) and human serum albumin (HSA) onto anti-HSA modified poly (pyrrolepropylic acid) nanowires. Fluorescence images of poly(pyrrolepropylic acid) nanowire (top right) and polypyrrole nanowire control (bottom right) after sequential treatment with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), anti HSA and fluorophore-labeled HSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Nano Lett 3:727–730

    Article  CAS  Google Scholar 

  2. Star A, Gabriel JCP, Bradley K, Gruner G (2003) Nano Lett 3:459–463

    Article  CAS  Google Scholar 

  3. Drouvalakis KA, Bangsaruntip S, Hueber W, Kozar LG, Utz PJ, Dai HJ (2008) Biosens Bioelectron 23:1413–1421

    Article  CAS  Google Scholar 

  4. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Nat Biotechnol 23:1294–1301

    Article  CAS  Google Scholar 

  5. Patolsky F, Zheng GF, Hayden O, Lakadamyali M, Zhuang XW, Lieber CM (2004) Proc Natl Acad Sci U S A 101:14017–14022

    Article  CAS  Google Scholar 

  6. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Science 293:1289–1292

    Article  CAS  Google Scholar 

  7. Hahm J, Lieber CM (2004) Nano Lett 4:51–54

    Article  CAS  Google Scholar 

  8. Aravinda CL, Cosnier S, Chen W, Myung NV, Mulchandani A (2008) Biosens Bioelectron doi:10.1016/j.bios.2008.08.044 (in press)

  9. Jerome C, Jerome R (1998) Angew Chem Int Ed 37:2488–2490

    Article  CAS  Google Scholar 

  10. Martin CR (1994) Science 266:1961–1966

    Article  CAS  Google Scholar 

  11. Cosnier S (2005) Electroanalysis 17:1701–1715

    Article  CAS  Google Scholar 

  12. Beh WS, Kim IT, Qin D, Xia YN, Whitesides GM (1999) Adv Mater 11:1038–1041

    Article  CAS  Google Scholar 

  13. Persson SHM, Dyreklev P, Inganas O (1996) Adv Mater 8:405–&

    Article  CAS  Google Scholar 

  14. Lipomi DJ, Chiechi RC, Dickey MD, Whitesides GM (2008) Nano Lett 8:2100–2105

    Article  CAS  Google Scholar 

  15. Huang ZY, Wang PC, MacDiarmid AG, Xia YN, Whitesides G (1997) Langmuir 13:6480–6484

    Article  CAS  Google Scholar 

  16. Kranz C, Ludwig M, Gaub HE, Schuhmann W (1995) Adv Mater 7:38–40

    Article  CAS  Google Scholar 

  17. Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P (2001) Proc Natl Acad Sci U S A 98:4835–4840

    Article  CAS  Google Scholar 

  18. Lim JH, Mirkin CA (2002) Adv Mater 14:1474–1477

    Google Scholar 

  19. He HX, Li CZ, Tao NJ (2001) Applied Physics Letters 78:811–813

    Google Scholar 

  20. Doshi J, Reneker DH (1995) J Electrost 35:151–160

    Article  CAS  Google Scholar 

  21. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) J Appl Physi 87:4531–4547

    Article  CAS  Google Scholar 

  22. Ramanathan K, Bangar MA, Yun MH, Chen W, Mulchandani A, Myung NV (2004) Nano Letters 4:1237–1239

    Google Scholar 

  23. Brynda E, Houska M, Brandenburg A, Wikerstal A (2002) Biosens Bioelectron 17:665–675

    Article  CAS  Google Scholar 

  24. Saber R, Mutlu S, Piskin E (2002) Biosens Bioelectron 17:727–734

    Article  CAS  Google Scholar 

  25. Sadik OA, Cheung MC (2001) Talanta 55:929–941

    Article  CAS  Google Scholar 

  26. Dong H, Li CM, Chen W, Zhou Q, Zeng ZX, Luong JHT (2006) Anal Chem 78:7424–7431

    Article  CAS  Google Scholar 

  27. Ko JM, Rhee HW, Park SM, Kim CY (1990) J Electrochem Soc 137:905–909

    Article  CAS  Google Scholar 

  28. Hernandez RM, Richter L, Semancik S, Stranick S, Mallouk TE (2004) Chem Mater 16:3431–3438

    Article  CAS  Google Scholar 

  29. Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2005) J Am Chem Soc 127:496–497

    Article  CAS  Google Scholar 

  30. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Electroanalysis 18:533–550

    Article  CAS  Google Scholar 

  31. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li YM, Kim W, Utz PJ, Dai HJ (2003) Proc Natl Acad Sci U S A 100:4984–4989

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge support by the Missouri State University Faculty Summer Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam K. Wanekaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolani, S.B., Craig, M., DeLong, R.K. et al. Towards biosensors based on conducting polymer nanowires. Anal Bioanal Chem 393, 1225–1231 (2009). https://doi.org/10.1007/s00216-008-2556-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2556-0

Keywords

Navigation