Skip to main content
Log in

Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We use direct femtosecond laser writing to integrate optical waveguides into a commercial fused silica capillary electrophoresis chip. High-quality waveguides crossing the microfluidic channels are fabricated and used to optically address, with high spatial selectivity, their content. Fluorescence from the optically excited volume is efficiently collected at a 90° angle by a high numerical aperture fiber, resulting in a highly compact and portable device. To test the platform we performed electrophoresis and detection of a 23-mer oligonucleotide plug. Our approach is quite powerful because it allows the integration of photonic functionalities, by simple post-processing, into commercial LOCs fabricated with standard techniques.

Femtosecond laser written waveguides can selectively excite fluorescence in a microfluidic channel of a commercial lab-on-a-chip. A compact scheme for on-chip detection by laser induced fluorescence is applied to capillary electrophoresis of a 23-mer Cy3-labeled oligonucleotide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reyes RD, Iossifidis D, Auroux PA, Manz A (2002) Anal Chem 74:2623–2636

    Article  CAS  Google Scholar 

  2. Auroux PA, Reyes DR, Iossifidis D, Manz A (2002) Anal Chem 74:2637–2652

    Article  CAS  Google Scholar 

  3. Whitesides GM (2006) Nature 442:368–373

    Article  CAS  Google Scholar 

  4. de Mello AJ (2006) Nature 442:394–402

    Article  CAS  Google Scholar 

  5. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Nature 442:412–418

    Article  CAS  Google Scholar 

  6. Harrison DJ, Fluri K, Seiler K, Fan ZH, Effenhauser CS, Manz A (1993) Science 261:895–897

    Article  CAS  Google Scholar 

  7. Landers JP (2003) Anal Chem 75:2919–2927

    Article  CAS  Google Scholar 

  8. Dishinger JF, Kennedy RT (2007) Anal Chem 79:947–954

    Article  CAS  Google Scholar 

  9. Mogensen KB, Klank H, Kutter JP (2004) Electrophoresis 25:3498–3512

    Article  CAS  Google Scholar 

  10. Craighead H (2006) Nature 442:387–393

    Article  CAS  Google Scholar 

  11. de Mello AJ (2003) Lab Chip 3:29N–34N

    Article  CAS  Google Scholar 

  12. Verpoorte E (2003) Lab Chip 3:42N–52N

    Article  CAS  Google Scholar 

  13. Hunt HC, Wilkinson JS (2008) Microfluid Nanofluid 4:53–79

    Article  CAS  Google Scholar 

  14. Kuswandi B, Nuriman, Huskens J, Verboom W (2007) Anal Chim Acta 601:141–155

    Article  CAS  Google Scholar 

  15. Mogensen KB, Friis P, Hübner J, Petersen NJ, Jorgensen AM, Telleman P, Kutter JP (2001) Opt Lett 26:716–718

    Article  CAS  Google Scholar 

  16. Hubner J, Mogensen KB, Jorgensen AM, Friis P, Telleman P, Kutter JP (2001) Rev Sci Instrum 72:229–234

    Article  CAS  Google Scholar 

  17. Mogensen KB, Petersen NJ, Hübner J, Kutter JP (2001) Electrophoresis 22:3930–3938

    Article  CAS  Google Scholar 

  18. Mazurczyk R, Vieillard J, Bouchard A, Hannes B, Krawczyka S (2006) Sens Act B 118:11–19

    Article  CAS  Google Scholar 

  19. Vieillard J, Mazurczyk R, Morin C, Hannes B, Chevolot Y, Desbene PL, Krawczyk S (2007) J Chromatogr B 845:218–225

    Article  CAS  Google Scholar 

  20. Mogensen KB, El-Ali J, Wolff A, Kutter JP (2003) Appl Opt 42:4072–4079

    Article  CAS  Google Scholar 

  21. Bliss CL, McMullin JN, Backhouse CJ (2007) Lab Chip 7:1280–1287

    Article  CAS  Google Scholar 

  22. Bliss CL, McMullin JN, Backhouse CJ (2008) Lab Chip 8:143–151

    Article  CAS  Google Scholar 

  23. Yin D, Deamer DW, Schmidt H, Barber JP, Hawkins AR (2006) Opt Lett 31:2136–2138

    Article  CAS  Google Scholar 

  24. Yin D, Lunt EJ, Rudenko MI, Deamer DW, Hawkins AR, Schmidt H (2007) Lab Chip 7:1171–1175

    Article  CAS  Google Scholar 

  25. Davis KM, Miura K, Sugimoto N, Hirao K (1996) Opt Lett 21:1729–1731

    Article  CAS  Google Scholar 

  26. Itoh K, Watanabe W, Nolte S, Schaffer C (2006) MRS Bull 31:620–625

    CAS  Google Scholar 

  27. Gatass RR, Mazur E (2008) Nature Photon 2:219–225

    Article  Google Scholar 

  28. Osellame R, Chiodo N, Della Valle G, Cerullo G, Ramponi R, Laporta P, Killi A, Morgner U, Svelto O (2006) J Select Topics Quantum Electron 12:277–285

    Article  CAS  Google Scholar 

  29. Eaton SM, Chen W, Zhang L, Zhang H, Iyer R, Aitchison JS, Herman PR (2006) IEEE Photon Technol Lett 18:2174–2176

    Article  Google Scholar 

  30. Cai B, Komatsu K, Sugihara O, Kagami M, Tsuchimori M, Matsui T, Kaino T (2008) Appl Phys Lett 92:253302

    Article  CAS  Google Scholar 

  31. Wang Z, Sugioka K, Hanada Y, Midorikawa K (2007) Appl Phys A 88:699–704

    Article  CAS  Google Scholar 

  32. Chiari M, Cretich M, Damin F, Cerotti L, Consonni R (2000) Electrophoresis 21:909–916

    Article  CAS  Google Scholar 

  33. Osellame R, Taccheo S, Marangoni M, Ramponi R, Laporta P, Polli D, De Silvestri S, Cerullo G (2003) J Opt Soc Am B 20:1559–1567

    Article  CAS  Google Scholar 

  34. Osellame R, Maselli V, Martinez Vazquez R, Ramponi R, Cerullo G (2007) Appl Phys Lett 90:231118

    Article  CAS  Google Scholar 

  35. Ghosal S (2004) Electrophoresis 25:214–228

    Article  CAS  Google Scholar 

  36. Cretich M, Chiari M, Rech I, Cova S (2003) Electrophoresis 24:3793–3799

    Article  CAS  Google Scholar 

  37. Huang X, Gordon MJ, Zare RN (1988) Anal Chem 60:1837–1838

    Article  CAS  Google Scholar 

  38. Rech I, Cova S, Restelli A, Ghioni M, Chiari M, Cretich M (2006) Electrophoresis 27:3797–3804

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Commission, 6th FP STREP Project Contract No. IST-2005-034562 [Hybrid Integrated Biophotonic Sensors Created by Ultrafast laser Systems (HIBISCUS)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Osellame.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez Vazquez, R., Osellame, R., Cretich, M. et al. Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides. Anal Bioanal Chem 393, 1209–1216 (2009). https://doi.org/10.1007/s00216-008-2399-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2399-8

Keywords

Navigation