Skip to main content
Log in

Monitoring of substrate and product concentrations in acetic fermentation processes for onion vinegar production by NIR spectroscopy: value addition to worthless onions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Wastes and by-products of the onion-processing industry pose an increasing disposal and environmental problem and represent a loss of valuable sources of nutrients. The present study focused on the production of vinegar from worthless onions as a potential valorisation route which could provide a viable solution to multiple disposal and environmental problems, simultaneously offering the possibility of converting waste materials into a useful food-grade product and of exploiting the unique properties and health benefits of onions. This study deals specifically with the second and definitive step of the onion vinegar production process: the efficient production of vinegar from onion waste by transforming onion ethanol, previously produced by alcoholic fermentation, into acetic acid via acetic fermentation. Near-infrared spectroscopy (NIRS), coupled with multivariate calibration methods, has been used to monitor the concentrations of both substrates and products in acetic fermentation. Separate partial least squares (PLS) regression models, correlating NIR spectral data of fermentation samples with each kinetic parameter studied, were developed. Wavelength selection was also performed applying the iterative predictor weighting–PLS (IPW-PLS) method in order to only consider significant spectral features in each model development to improve the quality of the final models constructed. Biomass, substrate (ethanol) and product (acetic acid) concentration were predicted in the acetic fermentation of onion alcohol with high accuracy using IPW-PLS models with a root-mean-square error of the residuals in external prediction (RMSEP) lower than 2.5% for both ethanol and acetic acid, and an RMSEP of 6.1% for total biomass concentration (a very satisfactory result considering the relatively low precision and accuracy associated with the reference method used for determining the latter). Thus, the simple and reliable calibration models proposed in this study suggest that they could be implemented in routine applications to monitor and predict the key species involved in the acetic fermentation of onion alcohol, allowing the onion vinegar production process to be controlled in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rogers M (1995) Onions: a celebration of the onion through recipes, lore, and history. Addison-Wesley, New York

    Google Scholar 

  2. FAO Statistics (2005) Food and Agriculture Organization of the United Nations: agricultural production data. http://faostat.fao.org/site/567/default.aspx. Accessed 19 May 2008

  3. Dorsch W, Scharff J, Bayer T, Wagner H (1989) Int Arch Allergy Appl Immunol 88:228–230

    CAS  Google Scholar 

  4. Hertog MGL, Hollman PCH (1996) Eur J Clin Nutr 50:63–71

    CAS  Google Scholar 

  5. Hollman PCH, Arts ICW (2000) J Sci Food Agric 80:1081–1093

    Article  CAS  Google Scholar 

  6. Griffiths G, Trueman L, Crowther T, Thomas B, Smith B (2002) Phytother Res 16:603–615

    Article  CAS  Google Scholar 

  7. Keusgen M (2002) Health and alliums. In: Rabinowitch HD, Currah L (eds) Advances in allium science. CABI, Wallingford

    Google Scholar 

  8. Waldron KW, Smith AC (1999) J Chem Technol Biotechnol 74:376–376

    Article  Google Scholar 

  9. Aguilera Y, Mollá Lorente E, López Andreu FJ, Martín Cabrejas MA, Esteban Álvarez RM, Benítez V, González L (2006) Alimentaria 372:112–113

    Google Scholar 

  10. Horiuchi JI, Kanno T, Kobayashi M (1999) J Biosci Bioeng 88:107–109

    Article  CAS  Google Scholar 

  11. Park YK, Jung ST, Kang SG, Park IB, Cheun KS, Kang SK (1999) Korean J Appl Microbiol Biotechnol 27:75–79

    Google Scholar 

  12. Horiuchi JI, Yamauchi N, Osugi M, Kanno T, Kobayashi M, Kuriyama H (2000) Bioresour Technol 75:153–156

    Article  CAS  Google Scholar 

  13. Horiuchi JI, Kanno T, Kobayashi M (2000) J Biosci Bioeng 90:289–293

    CAS  Google Scholar 

  14. Horiuchi JI, Tada K, Kobayashi M, Kanno T, Ebie K (2004) Resour Conserv 40:97–109

    Article  Google Scholar 

  15. Gardner NJ, Savard T, Obermeier P, Cladwell G, Champagne CP (2001) Int J Food Microbiol 64:261–275

    Article  CAS  Google Scholar 

  16. Roberts JS, Kidd DR (2005) Lebensm – Wiss u Technol 38:185–190

    Article  CAS  Google Scholar 

  17. Vaidyanathan S, Macaloney G, Vaughan J, McNeil B, Harvey LM (1999) Crit Rev Biotechnol 19:277–316

    Article  CAS  Google Scholar 

  18. Vaidyanathan S, Arnold SA, Matheson L, Mohan P, McNeil B, Harvey LM (2001) Biotech Bioeng 74:376–388

    Article  CAS  Google Scholar 

  19. Tosi S, Rossi M, Tamburini E, Vaccari G, Amaretti A, Mateuzzi D (2003) Biotechnol Prog 19:1816–1821

    Article  CAS  Google Scholar 

  20. Garrido-Vidal D, Esteban-Díez I, Pérez-del-Notario N, González-Sáiz JM, Pizarro C (2004) J Near Infrared Spectrosc 12:15–27

    CAS  Google Scholar 

  21. Blanco M, Peinado AC, Mas J (2004) Biotechnol Bioeng 88:536–542

    Article  CAS  Google Scholar 

  22. Ferreira AP, Alves TP, Menezes JC (2005) Biotechnol Bioeng 91:474–481

    Article  CAS  Google Scholar 

  23. Blanco M, Peinado AC, Mas J (2006) Anal Chim Acta 556:364–373

    Article  CAS  Google Scholar 

  24. Scarff M, Arnold SA, Harvey LM, McNeil B (2006) Crit Rev Biotechnol 26:17–39

    Article  CAS  Google Scholar 

  25. González-Sáiz JM, Pizarro C, Esteban-Díez I, Ramírez O, González-Navarro CJ, Sáiz-Abajo MJ, Itoiz R (2007) J Agric Food Chem 55:2930–2936

    Article  Google Scholar 

  26. Forina M, Casolino C, Pizarro C (1999) J Chemom 13:165–184

    Article  CAS  Google Scholar 

  27. Singh A, Kuhad RC, Sahai V, Ghosh P (1994) Adv Biochem Eng Biotechnol 51:47–70

    CAS  Google Scholar 

  28. Forina M, Lanteri S, Armanino C, Cerrato-Oliveros MC, Casolino C (2004) V-PARVUS 2004, an extendable package of programs for explorative data analysis, classification and regression analysis. Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari, Università di Genova, Italy

  29. Næs T, Isaksson T, Fearn T, Davies T (2004) A user-friendly guide to multivariate calibration and classification. NIR, Chichester

    Google Scholar 

Download references

Acknowledgements

The authors thank the Spanish Government (Ministerio de Educación y Ciencia, Project No. AGL2003–09138-C04–04), the Autonomous Government of La Rioja (Plan Riojano de I+D+I, Projects No. ACPI-2004/02 and ACPI-2005) and the University of La Rioja for their financial support, as well as the CEBACAT (Asociación Catalana de Productores – Comercializadores de Cebolla) for providing the raw materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. González-Sáiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Sáiz, J.M., Esteban-Díez, I., Sánchez-Gallardo, C. et al. Monitoring of substrate and product concentrations in acetic fermentation processes for onion vinegar production by NIR spectroscopy: value addition to worthless onions. Anal Bioanal Chem 391, 2937–2947 (2008). https://doi.org/10.1007/s00216-008-2186-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2186-6

Keywords

Navigation