Skip to main content
Log in

Application of inductively coupled plasma–mass spectrometry (ICP–MS) and quality assurance to study the incorporation of strontium into bone, bone marrow, and teeth of dogs after one month of treatment with strontium malonate

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The strontium content of serum, bone, marrow, and teeth was determined by inductively-coupled plasma mass spectrometry (ICP–MS). Significant correlations were obtained after the data were subjected to quality assurance (QA) performed according to validated procedures. After four weeks of treatment with strontium malonate, strontium levels increased from 76 ± 9 μg g−1 in placebo-treated dogs to levels of 7.2 ± 1.7 mg g−1, 9.5 ± 2.7 mg g−1, and 9.8 ± 2.7 mg g−1 in groups treated with 300, 1000, and 3000 mg kg−1 day−1, respectively. Strontium induced a highly significant increase in the bone formation marker, bone-specific alkaline phosphatase (BSAP), and an excellent correlation was found with the bone-strontium content. In females, the placebo-treated group showed a decrease in BSAP of 53%, whereas the three strontium malonate-treated groups showed an increase of 60, 276, and 278% for the groups treated with 300, 1000, and 3000 mg kg−1 day−1, respectively. For males the corresponding values were −44%, +142%, +194%, and +247% increases in BSAP in the placebo, 300, 1000, and 3000 mg kg−1 day−1 groups respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shorr E, Carter A (1952) Bull Hosp Joint Dis 13:59–66

    CAS  Google Scholar 

  2. McCaslin FE, Janes JM (1959) Proc Staff Meetings of the Mayo Clinic 34:329–334

    Google Scholar 

  3. Sorbera LA, Castaner J, Leeson PA, Bayes M (2003) Drug Future 28:328–335

    Article  CAS  Google Scholar 

  4. Nielsen SP (2004) Bone 35:583–588

    Article  CAS  Google Scholar 

  5. Marie PJ (2003) Osteoporos Int 14(Suppl 3):S9–S12

    CAS  Google Scholar 

  6. Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ (1996) Bone 18:517–523

    Article  CAS  Google Scholar 

  7. Marie PJ, Ammann P, Boivin G, Rey C (2001) Calc Tiss Inter 69:121–129

    Article  CAS  Google Scholar 

  8. Jensen J-EB, Stang H, Kringsholm B (1997) Bone 20(S4):104–108

    Google Scholar 

  9. Boivin G, Meunier PJ (2003) Osteopor Inter 14:S19–S24

    Article  Google Scholar 

  10. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Bone 28:446–453

    Article  CAS  Google Scholar 

  11. Briggman B, Oskarsson A (1977) Acta Crystallogr B 33:1900–1906

    Article  Google Scholar 

  12. Christensen A (2005) Strontium malonate–4 week toxicity study in dogs with toxicokinetics, Scantox Study report 59147

  13. Helsby CA (1974) Anal Chim Acta 69:259–265

    Article  CAS  Google Scholar 

  14. Burguera M, Burguera JL, Di Bernardo ML, Alarcon OM, Nieto E, Salinas JR, Burguera E (2002) Tr Elem Electr 19:143–151

    CAS  Google Scholar 

  15. Scancar J, Milacic R, Benedik M, Bukovec P (2000) Clin Chim Acta 293:187–197

    Article  CAS  Google Scholar 

  16. Burguera M, Burguera JL, Rondon C, Di Bernardo ML, Gallignani M, Nieto E, Salinas J (1999) Spectrochim Acta B 54:805–818

    Article  Google Scholar 

  17. D’haese PC, VanLandeghem GF, Lamberts LV, Bekaert VA, Schrooten I, Debroe ME (1997) Clin Chem 43:121–128

    CAS  Google Scholar 

  18. Burguera M, Burguera JL, Di Bernardo ML, Rondon C, Carrero P, Nieto E, Salinas R, Burguera E (1999) Quim Anal 18:305–312

    CAS  Google Scholar 

  19. Roberts NB, Walsh HPJ, Klenerman L, Kelly SA, Helliwell TR (1996) J Anal At Spectrosc 11:133–138

    Article  CAS  Google Scholar 

  20. Outridge PM, Hughes RJ, Evans RD (1996) At Spectrosc 17:1–8

    CAS  Google Scholar 

  21. Kang D, Amarasiriwardena D, Goodman AH (2004) Anal Bioanal Chem 378:1608–1615

    Article  CAS  Google Scholar 

  22. Gy PM (1998) Sampling for analytical purposes. Wiley, Chichester

    Google Scholar 

  23. Hasegawa T, Matsuura H, Inagaki K, Haraguchi H (2003) Anal Sci 19:147–150

    Article  CAS  Google Scholar 

  24. Hsiung CS, Andrade JD, Costa R, Ash KO (1997) Clin Chem 43:2303–2311

    CAS  Google Scholar 

  25. Goulle JP, Mahieu L, Castermant J, Neveu N, Bonneau L, Laine G, Bouige D, Lacroix C (2005) For Sci Inter 153:39–44

    CAS  Google Scholar 

  26. Vezzoli G, Baragetti I, Zerbi S, Caumo A, Soldati L, Bellinzoni P, Centemero A, Rubinacci A, Moro G, Bianchi G (1998) Clin Chem 44:586–590

    CAS  Google Scholar 

  27. Olsen KJ (2005) Four week toxicity study in dogs with toxicokinetics, end of text listings, tables, figures and statistical output, Study NBS T07 GE

  28. Olsen KJ (2005) Four week toxicity study in dogs with toxicokinetics, Statistical report of toxicokinetic data, Study NBS T07 GE

  29. Marie PJ (2006) Bone 38:S10–S14

    Article  CAS  Google Scholar 

  30. Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) J Bone Miner Res 11:1302–1311

    Article  CAS  Google Scholar 

  31. Cabrera WE, Schrooten I, De Broe ME, D’Haese PC (1999) J Bone Miner Res 14:661–668

    Article  CAS  Google Scholar 

  32. Gawlik D, Behne D, Bratter P, Gatschke W, Gessner H, Kraft D (1982) J Clin Chem Clin Biochem 20:499–507

    CAS  Google Scholar 

  33. Danzer K, Currie LA (1998) Pure Appl Chem 70:993–1014

    Article  CAS  Google Scholar 

  34. Inczedy J, Lengyel T, Ure AM (1998) International Union of Pure and Applied Chemistry, Compendium of analytical nomenclature, online ed, Blackwell Science; http://www.iupac.org/publications/books/author/inczedy.html

  35. Brüggemann L, Morgenstern P, Wennrich R (2005) Accred Qual Assur 10:344–351

    Article  CAS  Google Scholar 

  36. Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry, 5th edn. Pearson, Edinburgh

    Google Scholar 

  37. Analytical Methods Committee (AMC) (2002), Technical Brief no. 10. Fitting a linear functional relationship to data with error on both variables, Royal Society of Chemistry, Cambridge; http://www.rsc.org/Membership/Networking/InterestGroups/Analytical/AMC/TechnicalBriefs.asp

  38. Miller JN (1991) Analyst 116:3–14

    Article  CAS  Google Scholar 

  39. Ellison SLR, Rösslein M, Williams A (eds) (2000) Eurachem/CITAC Guide, Quantifying uncertainty in analytical measurement, 2nd edn

  40. Cuadros-Rodriguez L, Gamiz-Cracia L, Almansa-Lopez E, Laso-Sanchez J (2001) Trends Anal Chem 20:195–206

    Article  CAS  Google Scholar 

  41. International Organization for Standardization (1995) Guide to the expression of uncertainty in measurement (GUM). Geneva, Switzerland

    Google Scholar 

Download references

Acknowledgements

Financial support from the Director Per Henriksen’s Foundation, the Idella Foundation, and from the Carlsberg Foundation is gratefully acknowledged.

Many thanks are due to Flemming E. Hansen for his expert technical assistance in operation of the Elan 5000 ICP–MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens E. T. Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raffalt, A.C., Andersen, J.E.T. & Christgau, S. Application of inductively coupled plasma–mass spectrometry (ICP–MS) and quality assurance to study the incorporation of strontium into bone, bone marrow, and teeth of dogs after one month of treatment with strontium malonate. Anal Bioanal Chem 391, 2199–2207 (2008). https://doi.org/10.1007/s00216-008-2171-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2171-0

Keywords

Navigation