Skip to main content
Log in

Analysis of amino acids without derivatization in barley extracts by LC-MS-MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method has been developed for quantification of 20 amino acids as well as 13 15N-labeled amino acids in barley plants. The amino acids were extracted from plant tissues using aqueous HCl–ethanol and directly analyzed without further purification. Analysis of the underivatized amino acids was performed by liquid chromatography (LC)–electrospray ionization (ESI) tandem mass spectrometry (MS-MS) in the positive ESI mode. Separation was achieved on a strong cation exchange column (Luna 5µ SCX 100Å) with 30 mM ammonium acetate in water (solvent A) and 5% acetic acid in water (solvent B). Quantification was accomplished using d 2-Phe as an internal standard. Calibration curves were linear over the range 0.5–50 µM, and limits of detection were estimated to be 0.1–3.0 µM. The mass-spectrometric technique was employed to study the regulation of amino acid levels in barley plants grown at 15 °C uniform root temperature (RT) and 20–10 °C vertical RT gradient (RTG). The LC-MS-MS results demonstrated enhanced concentration of free amino acids in shoots at 20–10 °C RTG, while total free amino acid concentration in roots was similarly low for both RT treatments. 15NO3 labeling experiments showed lower 15N/14N ratios for Glu, Ser, Ala and Val in plants grown at 20–10 °C RTG compared with those grown at 15 °C RT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hewitt EJ (1975) Annu Rev Plant Physiol 26:73–100

    Article  CAS  Google Scholar 

  2. Guerrero MG, Vega JM, Losada M (1981) Annu Rev Plant Physiol 32:169–204

    Article  CAS  Google Scholar 

  3. Miflin BJ, Lea PJ (1977) Annu Rev Plant Physiol 28:299–329

    Article  CAS  Google Scholar 

  4. Atkins C, Beevers L (1990) In: Abroyl YP (ed) Nitrogen in higher plants. Wiley, New York, p 223

  5. Fritz C, Mueller C, Matt P, Feil R, Stitt M (2006) Plant Cell Environ 29:2055–2076

    Article  CAS  Google Scholar 

  6. Roth M (1971) Anal Chem 43:880–882

    Article  CAS  Google Scholar 

  7. Einarsson S, Josefsson B, Lagerkvist S (1983) J Chromatogr 282:609–618

    Article  CAS  Google Scholar 

  8. Blankenship DT, Krivanek MA, Ackermann BL, Cardin AD (1989) Anal Biochem 178:227–232

    Article  CAS  Google Scholar 

  9. Chace DH (2001) Chem Rev 101:445–478

    Article  CAS  Google Scholar 

  10. Husek P, Simek P (2006) Curr Pharm Anal 2:23–43

    Article  CAS  Google Scholar 

  11. Calder AG, Garden KE, Anderson SE, Lobley GE (1999) Rapid Commun Mass Spectrom 13:2080–2083

    Article  CAS  Google Scholar 

  12. Wood PL, Khan MA, Moskal JR (2006) J Chromatogr B 831:313–319

    Article  CAS  Google Scholar 

  13. Monton MRN, Soga T (2007) J Chromatogr A 1168:237–246

    Article  CAS  Google Scholar 

  14. Soga T, Kakazu Y, Robert M, Tomita M, Nishioka T (2004) Electrophoresis 25:1964–1972

    Article  CAS  Google Scholar 

  15. Soga T, Heiger DN (2000) Anal Chem 72:1236–1241

    Article  CAS  Google Scholar 

  16. Chaimbault P, Petritis K, Elfakir C, Dreux M (1999) J Chromatogr A 855:191–202

    Article  CAS  Google Scholar 

  17. Petritis K, Chaimbault P, Elfakir C, Dreux M (2000) J Chromatogr A 896:253–263

    Article  CAS  Google Scholar 

  18. Qu J, Chen W, Luo G, Wang YM, Xiao SY, Ling Z, Chen GQ (2002) Analyst 127:66–69

    Article  CAS  Google Scholar 

  19. Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens J-P, Bouchu D (2005) Rapid Commun Mass Spectrom 19:1587–1602

    Article  CAS  Google Scholar 

  20. Armstrong M, Jonscher K, Reisdorph NA (2007) Rapid Commun Mass Spectrom 21:2717–2726

    Article  CAS  Google Scholar 

  21. Husek P, Sweeley CC (1991) J High Resolut Chromatogr 14:751–753

    Article  CAS  Google Scholar 

  22. Husek P (1991) J Chromatogr 552:289–299

    Article  CAS  Google Scholar 

  23. Bonfiglio R, King RC, Olah TV, Merkle K (1999) Rapid Commun Mass Spectrom 13:1175–1185

    Article  CAS  Google Scholar 

  24. Hsieh Y, Chintala M, Mei H, Agans J, Brisson J-M, Ng K, Korfmacher WA (2001) Rapid Commun Mass Spectrom 15:2481–2487

    Article  CAS  Google Scholar 

  25. Alpert AJ (1990) J Chromatogr A 499:177–196

    Article  CAS  Google Scholar 

  26. Schlichtherle-Cerny H, Affolter M, Cerny C (2003) Anal Chem 75:2349–2354

    Article  CAS  Google Scholar 

  27. Langrock T, Czihal P, Hoffmann R (2006) Amino Acids 30:291–297

    Article  CAS  Google Scholar 

  28. Welch LE, LaCourse WR, Mead DA, Johnson DC, Hu T (1989) Anal Chem 61:555–559

    Article  CAS  Google Scholar 

  29. Luo P, Zhang F, Baldwin RP (1991) Anal Chem 63:1702–1707

    Article  CAS  Google Scholar 

  30. Füllner K (2007) The influence of spatially heterogeneous soil temperatures on plant structure and function. Dissertation, Heinrich Heine University, Düsseldorf

    Google Scholar 

  31. Huang ZH, Wang J, Gage DA, Watson JT, Sweeley CC, Husek P (1993) J Chromatogr 635:271–281

    Article  CAS  Google Scholar 

  32. Dookeran NN, Yalcin T, Harrison AG (1996) J Mass Spectrom 31:500–508

    Article  CAS  Google Scholar 

  33. Rey MA, Pohl CA (1996) J Chromatogr A 739:87–97

    Article  CAS  Google Scholar 

  34. Rufty TW, Raper CD, Jackson WA (1981) New Phytol 88:607–619

    CAS  Google Scholar 

  35. Imsande J, Touraine B (1994) Plant Physiol 105:3–7

    CAS  Google Scholar 

  36. Aslam M, Travis RL, Rains DW (2001) Plant Sci 160:219–228

    Article  CAS  Google Scholar 

  37. Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B, Glass ADM (2000) Plant Physiol 123:307–318

    Article  CAS  Google Scholar 

  38. Touraine B, Clarkson DT, Muller B (1994) In: Roy J, Garnier E (eds) A whole plant perspective on carbon-nitrogen interactions. SPB, The Hague

Download references

Acknowledgements

The authors are grateful to Matthias Gehre (Helmholtz Centre for Environmental Research, UFZ Leipzig, Germany) for providing the 15N-labeled amino acids. We also wish to thank Bernd Kastenholz for his assistance in the optimization of the leaf extraction procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Thiele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiele, B., Füllner, K., Stein, N. et al. Analysis of amino acids without derivatization in barley extracts by LC-MS-MS. Anal Bioanal Chem 391, 2663–2672 (2008). https://doi.org/10.1007/s00216-008-2167-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2167-9

Keywords

Navigation