Skip to main content
Log in

Cubic phases in biosensing systems

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Incorporation of membrane proteins with retained activity in artificial membranes for use in membrane-based sensors has attracted scientists for decades. This review briefly summarises general concepts on relevant cubic phases with and without incorporated proteins and provides some insight into the development of biosensors where bicontinuous cubic phases are used for incorporation of an enzyme. Some new data on impedance characterisation of a supported cubic phase are also shown. An efficient membrane-based electrochemical biosensor requires that the analyte has free access to the immobilised membrane protein and that regeneration of the catalysing enzyme is fast. Long-term stability of the system is also necessary for the biosensor to find applications outside the research laboratory. These basic concepts are discussed in the review along with presentation of those biosensing systems based on cubic phases that are reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Castellana E, Cremer P (2006) Surf Sci Rep 61:429–444

    Article  CAS  Google Scholar 

  2. Brian A, McConnell H (1984) Proc Natl Acad Sci U S A 81:6159–6163

    Article  CAS  Google Scholar 

  3. Zhang L, Spurlin T, Gewirth A, Granick S (2006) Phys Chem Lett B 110:33–35

    CAS  Google Scholar 

  4. Purrucker O, Hillebrandt H, Adlkofer K, Tanaka M (2001) Electrochim Acta 47:791–798

    Article  CAS  Google Scholar 

  5. Forstner MB, Yee CK, Parikh AN, Groves JT (2006) J Am Chem Soc 128:15221–15227

    Article  CAS  Google Scholar 

  6. Puu G, Gustafsson I, Artursson E, Ohlsson P-Å (1995) Biosens Bioelectron 10:463–476

    Article  CAS  Google Scholar 

  7. Rehfeldt F, Tanaka M (2003) Langmuir 19:1467–1473

    Article  CAS  Google Scholar 

  8. Goennenwein S, Tanaka M, Hu B, Moroder L, Sackmann E (2003) Biophys J 85:646–655

    CAS  Google Scholar 

  9. Baumgart T, Offenhausser A (2003) Langmuir 19(5):1730–1737

    Article  CAS  Google Scholar 

  10. Morigaki K, Schonherr H, Frank C, Knoll W (2003) Langmuir 19:6994–7002

    Article  CAS  Google Scholar 

  11. Vikholm-Lundin I (2005) Langmuir 21:6473–6477

    Article  CAS  Google Scholar 

  12. Merzlyakov M, Li E, Gitsov I, Hristova K (2006) Langmuir 22:10145–10151

    Article  CAS  Google Scholar 

  13. Lindholm-Sethson B, Gonzalez JC, Puu G (1998) Langmuir 14:6705–6708

    Article  CAS  Google Scholar 

  14. Albertorio F, Diaz A, Yang T, Chapa V, Kataoka S, Castellana E, Cremer P (2005) Langmuir 21:7476–7482

    Article  CAS  Google Scholar 

  15. Vikholm I, Peltonen J, Teleman O (1995) Biochim Biophys Acta 1233:111–117

    Article  Google Scholar 

  16. Vikholm I, Viitala T, Albers W, Peltonen J (1999) Biochim Biophys Acta 1421:39–52

    Article  CAS  Google Scholar 

  17. Andersson M, Keizer H, Zhu C, Fine D, Dodabalapur A, Duran R (2007) Langmuir 23:2924–2927

    Article  CAS  Google Scholar 

  18. Wilkop T, Xu DK, Cheng Q (2007) Langmuir 23:1403–1409

    Article  CAS  Google Scholar 

  19. Wagner ML, Tamm LK (2000) Biophys J 79:1400–1414

    CAS  Google Scholar 

  20. Tamm LK, Crane J, Kiessling V (2003) Curr Op Struct Biol 13:453–466

    Article  CAS  Google Scholar 

  21. Krishna G, Schulte J, Cornell B, Pace R, Osman P (2003) Langmuir 19:2294–2305

    Article  CAS  Google Scholar 

  22. Mueller P, Rudin D, Tien H, Wescot W (1962) Nature 194:979–980

    Article  CAS  Google Scholar 

  23. Romer W, Lam Y, Fischer D, Watts A, Fischer W, Goring P, Wehrspohn R, Gosele U, Steinem C (2004) J Am Chem Soc 126:16267–16274

    Article  CAS  Google Scholar 

  24. Danelon C, Perez J, Santschi C, Brugger J, Vogel H (2006) Langmuir 22:22–25

    Article  CAS  Google Scholar 

  25. Lindblom G, Rilfors L (1989) Biochim Biophys Acta 988:221–256

    CAS  Google Scholar 

  26. Ericsson B, Larsson K, Fontell K (1983) Biochim Biophys Acta 729:23–27

    Article  CAS  Google Scholar 

  27. Nazaruk E, Michota A, Bukowska J, Shleev S, Gorton L, Bilewicz R (2007) J Biol Inorg Chem 12:335–344

    Article  CAS  Google Scholar 

  28. Carr MG, Corish J, Corrigan OI (1997) Int J Pharm 157:35–42

    Article  CAS  Google Scholar 

  29. Helledi LS, Schubert L (2001) Drug Del Ind Pharm 27:1073–1082

    Article  CAS  Google Scholar 

  30. Bender J, Ericson MB, Merclin N, Iani V, Rosen A, Engstrom S, Moan J (2005) J Contr Release 106:350–360

    Article  CAS  Google Scholar 

  31. Lopes LB, Lopes JLC, Oliveira DCR, Thomazini JA, Garcia MTJ, Fantini MCA, Collett JH, Bentley MVLB (2006) Eur J Pharm Biopharm 63:146–155

    Article  CAS  Google Scholar 

  32. Clogston J, Caffrey M (2007) J Contr Release 107:97–111

    Article  CAS  Google Scholar 

  33. Qutub Y, Reviakine I, Maxwell C, Navarro J, Landau EM, Vekilov PG (2004) J Mol Biol 343:1243–1254

    Article  CAS  Google Scholar 

  34. Chi ML, Nollert P, Loewen MC, Belrhali H, Pebay-Peyroula E, Rosenbusch JP, Landau EM (2000) Acta Crystallogr D 56:781–784

    Article  Google Scholar 

  35. Carlsson N, Winge A-S, Engström S, Å, kerman B (2005) J Phys Chem B 109:18628–18636

    Article  CAS  Google Scholar 

  36. Carlsson N, Sanandaji N, Voinova M, Åkerman B (2006) Langmuir 22:4408–4414

    Article  CAS  Google Scholar 

  37. Razumas V, Kanapieniene J, Nylander T, Engström S, Larsson K (1994) Anal Chim Acta 289:155–162

    Article  CAS  Google Scholar 

  38. Rowinski P, Kang C, Shin H, Heller A (2007) Anal Chem 79:1173–1180

    Article  CAS  Google Scholar 

  39. Rowinski P, Rowinska M, Heller A (2008) Anal Chem 80:1746–1755

    Article  CAS  Google Scholar 

  40. Orädd G, Lindblom G, Fontell K, Ljusberg-Wahren H (1995) Biophys J 68:1856–1863

    Google Scholar 

  41. Lindblom G, Larsson K, Johansson L, Fontell K, Forsén S (1979) J Am Chem Soc 101:5465–5470

    Article  CAS  Google Scholar 

  42. Kraineva J, Narayanan RA, Kondrashkina E, Thiyagarajan P, Winter R (2005) Langmuir 21:3559–3571

    Article  CAS  Google Scholar 

  43. Danino D, Kaplun A, Lindblom G, Rilfors L, Orädd G, Hauksson JB, Talmon Y (1997) Chem Phys Lipids 85:75–89

    Article  CAS  Google Scholar 

  44. Lindblom G, Orädd G (1994) Prog Nucl Magn Reson Spectrosc 26:483–516

    Article  CAS  Google Scholar 

  45. Lindblom G, Larsson K, Johansson L, Fontell K, Forsén S (1979) J Am Chem Soc 101:5465–5470

    Article  CAS  Google Scholar 

  46. Eriksson P-O, Lindblom G, Arvidson G (1985) J Phys Chem 89:1050–1053

    Article  CAS  Google Scholar 

  47. Eriksson P-O, Lindblom G, Arvidson G (1987) J Phys Chem 91:846–853

    Article  CAS  Google Scholar 

  48. Razumas V, Larsson K, Miezis Y, Nylander T (1996) J Phys Chem 100:11766–11774

    Article  CAS  Google Scholar 

  49. Razumas V, Talaikyt Z, Barauskas J, Miezis Y, Nylander T (1997) Vib Spectrosc 15:91–101

    Article  CAS  Google Scholar 

  50. Kraineva J, Narayanan RA, Kondrashkina E, Thiyagarajan P, Winter R (2005) Langmuir 21:3559–3571

    Article  CAS  Google Scholar 

  51. Caboi F, Nylander T, Razumas V, Talaikyte Z, Monduzzi M, Larsson K (1997) Langmuir 13:5476–5483

    Article  CAS  Google Scholar 

  52. Corvis Y, Brezesinski G, Rink R, Walcarius A, Heyden A, Mutelet F, Rogalska E (2006) Anal Chem 78:4850–4864

    Article  CAS  Google Scholar 

  53. Andrieux CP, Saveant JM (1982) J Electroanal Chem 134:163–166

    Article  CAS  Google Scholar 

  54. Rowinski P, Korytkowska A, Bilewicz R (2003) Chem Phys Lip 124:147–156

    Article  CAS  Google Scholar 

  55. Kostela J, Elmgren M, Kadi M, Almgren M (2005) J Phys Chem B 109:5073–5078

    Article  CAS  Google Scholar 

  56. Kumar SV, Lakshminarayanan V (2007) Langmuir 23:1548–1554

    Article  CAS  Google Scholar 

  57. Lindholm-Sethson B (1996) Langmuir 12:3305–3314

    Article  CAS  Google Scholar 

  58. Bard AJ, Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications, 2nd ed. John Wiley & Sons Inc., p. 380

  59. Barauskas J, Razumas V, Talaikyte Z, Bulovas A, Nylander T, Tauraite D, Butkus E (2003) Chem Phys Lipids 123:87–97

    Article  CAS  Google Scholar 

  60. Ropers MH, Bilewicz R, Stebe MJ, Hamidi A, Miclo A, Rogalska E (2001) Phys Chem Chem Phys 3:240–245

    Article  CAS  Google Scholar 

  61. Rowinski P, Bilewicz R, Stebe MJ, Rogalska E (2004) Anal Chem 76:283–291

    Article  CAS  Google Scholar 

  62. Nazaruk E, Bilewicz R (2007) Bioelectrochemistry 71:8–14

    Article  CAS  Google Scholar 

  63. Nazaruk E, Michota A, Bukowska J, Shleev S, Gorton L, Bilewicz R (2007) J Biol Inorg Chem 12:335–344

    Article  CAS  Google Scholar 

  64. Wiyaratn W, Somasundrum M, Surareungchai W (2005) Analyst 130:626–631

    Article  CAS  Google Scholar 

  65. Angelova A, Ollivon M, Campitelli A, Bourgaux C (2003) Langmuir 19:6928–6935

    Article  CAS  Google Scholar 

  66. Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Bourgaux C, Couvreur P (2005) J Phys Chem B 109:3089–3093

    Article  CAS  Google Scholar 

  67. Popescu G, Barauskas J, Nylander T, Tiberg F (2007) Langmuir 23:496–503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Lindholm-Sethson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazaruk, E., Bilewicz, R., Lindblom, G. et al. Cubic phases in biosensing systems. Anal Bioanal Chem 391, 1569–1578 (2008). https://doi.org/10.1007/s00216-008-2149-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2149-y

Keywords

Navigation