Skip to main content
Log in

Molecular separation in the lipid bilayer medium: electrophoretic and self-spreading approaches

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Molecular separation in a microchannel is a key technology for future miniature devices. Because of growing advances in microfabrication techniques, we now have various choices of microscopic molecular separation systems. Recent progress in this field is reviewed in this manuscript. In particular, the use of the lipid bilayer as a separation medium is highlighted, because of its possible application to the manipulation of relatively small biomaterials such as membrane proteins and lipids. In this context, an approach based on electrophoresis is reviewed for molecular separation in the bilayer. Although the methods based on electrophoresis are effective, we will also focus on their limitation, i.e., only charged molecules can be manipulated. To solve this dilemma, we review new techniques based on the self-spreading nature of the lipid bilayer. In this method, there is no need to input an external field, such as an electric field, to achieve molecular separation. Phenomenological insights into the self-spreading nature and newly proposed molecular separation effects are shown in detail. This novel concept enables us to establish a completely unbiased molecular separation system in future microscopic and nanoscopic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Volkmuth WD, Austin RH (1992) Nature 358:600

    Article  CAS  Google Scholar 

  2. Turner SW, Perez AM, Lopez A, Craighead HG (1998) J Vac Sci Technol B 16:3835

    Article  CAS  Google Scholar 

  3. Chou HP, Spence C, Scherer A, Quake S (1999) Proc Natl Acad Sci USA 96:11

    Article  CAS  Google Scholar 

  4. Huang LR, Tegenfeldt JO, Kraeft JJ, Sturm JC, Austin RH, Cox EC (2002) Nature Biotech 20:1048

    Article  CAS  Google Scholar 

  5. Turner SWP, Cabodi M, Craighead HG (2002) Phys Rev Lett 88:128103

    Article  CAS  Google Scholar 

  6. Inatomi K, Izuo S, Lee S, Ohji H, Shiono S (2003) Microelectron Eng 70:13

    Article  CAS  Google Scholar 

  7. Seo YS, Luo H, Samuilov VA, Rafailovich MH, Sokolov J, Gersappe D, Chu B (2004) Nano Lett 4:659

    Article  CAS  Google Scholar 

  8. Kaji N, Tezuka Y, Takamura Y, Ueda M, Nishimoto T, Nakanishi H, Horiike Y, Baba Y (2004) Anal Chem 76:15

    Article  CAS  Google Scholar 

  9. Ertaş D (1998) Phys Rev Lett 80:1548

    Article  Google Scholar 

  10. Duke TAJ, Austin RH (1998) Phys Rev Lett 80:1552

    Article  CAS  Google Scholar 

  11. Chou CF, Bakajin O, Turner SWP, Duke TAJ, Chan SS, Cox EC, Craighead HG, Austin RH (1999) Proc Natl Acad Sci USA 96:13762

    Article  CAS  Google Scholar 

  12. Bader JS, Hammond RW, Henck SA, Deem MW, McDermott GA, Bustillo JM, Simpson JW, Mulhern GT, Rothberg JM (1999) Proc Natl Acad Sci USA 96:13165

    Article  CAS  Google Scholar 

  13. van Oudenaarden A, Boxer SG (1999) Science 285:1046

    Article  Google Scholar 

  14. Bader JS, Deem MW, Hammond RW, Henck SA, Simpson JW, Rothberg JM (2002) Appl Phys A 75:275

    Article  CAS  Google Scholar 

  15. Cabodi M, Chen YF, Turner SWP, Craighead HG, Austin RH (2002) Electrophoresis 23:3496

    Article  CAS  Google Scholar 

  16. Huang LR, Silberzan P, Tegenfeldt JO, Cox EC, Sturm JC, Austin RH, Craighead H (2002) Phys Rev Lett 89:178301

    Article  CAS  Google Scholar 

  17. Huang LR, Cox EC, Austin RH, Sturm JC (2003) Anal Chem 75:6963

    Article  CAS  Google Scholar 

  18. Han J, Craighead HG (1999) J Vac Sci Technol A 17:2142

    Article  CAS  Google Scholar 

  19. Han J, Craighead HG (2000) Science 288:1026

    Article  CAS  Google Scholar 

  20. Tessier F, Labrie J, Slater GW (2002) Macromol 35:4791

    Article  CAS  Google Scholar 

  21. Fu J, Mao P (2005) Appl Phys Lett 87:263902

    Article  CAS  Google Scholar 

  22. Fu J, Yoo J, Han J (2006) Phys Rev Lett 97:018103

    Article  CAS  Google Scholar 

  23. Schoch RB, Bertsch A, Renaud P (2006) Nano Lett 6:543

    Article  CAS  Google Scholar 

  24. Fu J, Schoch RB, Stevens AL, Tannenbaum SR, Han J (2007) Nature Nanotech 2:121

    Article  CAS  Google Scholar 

  25. Zeng Y, Harrison DJ (2007) Anal Chem 79:2289

    Article  CAS  Google Scholar 

  26. Nykypanchuk D, Strey HH, Hoadland DA (2002) Science 297:987

    Article  CAS  Google Scholar 

  27. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Science 304:987

    Article  CAS  Google Scholar 

  28. Gunnarsson K, Roy PE, Felton S, Pihl J, Svedlindh P, Berner S, Lidbaum H, Oscarsson S (2005) Adv Mater 17:1730

    Article  CAS  Google Scholar 

  29. MacDonald MP, Spalding Gc, Dholakia K (2003) Nature 426:421

    Article  CAS  Google Scholar 

  30. Barenholz Y, Gibbes D, Litman BJ, Goll J, Thompson TE, Carlson FD (1977) Biochem 12:2806

    Google Scholar 

  31. Mayer LD, Hope MJ, Culllis PR (1986) Biochim Biophys Acta 858:161

    Article  CAS  Google Scholar 

  32. Stengel G, Zahn R, Hook F (2007) J Am Chem Soc 129:9584

    Article  CAS  Google Scholar 

  33. Uda RM, Yamashita D, Sakurai Y, Kimura K (2007) Langmuir 23:7936

    Article  CAS  Google Scholar 

  34. Tokumasu F, Hwang J, Dvorak J (2004) Langmuir 20:614

    Article  CAS  Google Scholar 

  35. Yamazaki V, Sirenko O, Schafer RJ, Groves JT (2005) J Am Chem Soc 127:2826

    Article  CAS  Google Scholar 

  36. Burns AR, Frankel DJ, Buranda T (2005) Biophys J 89:1081

    Article  CAS  Google Scholar 

  37. Tero R, Urisu T, Okawara H, Nagayama K (2005) J Va Sci Technol A 23:751

    Article  CAS  Google Scholar 

  38. Tero R, Watanabe H, Urisu T (2006) Phys Chem Chem Phys 8:3885

    Article  CAS  Google Scholar 

  39. Zhang L, Longo ML, Stroeve P (2000) Langmuir 16:5093

    Article  CAS  Google Scholar 

  40. Munro JC, Frank CW (2004) Langmuir 20:10567

    Google Scholar 

  41. Tanaka M, Sackmann E (2005) Nature 437:656

    Article  CAS  Google Scholar 

  42. Bayerl TM, Bloom M (1990) Biophys J 58:357

    CAS  Google Scholar 

  43. Moura SP, Carmona-Ribeiro AM (2005) Langmuir 21:10160

    Article  CAS  Google Scholar 

  44. Keller CA, Kasemo B (1998) Biophys J 75:1397

    CAS  Google Scholar 

  45. Lahiri J, Kalal P, Frutos AG, Jonas SJ, Schaeffler R (2000) Langmuir 16:7850

    Google Scholar 

  46. Dorvel BR, Keizer HM, Fine D, Vuorinen J, Dodabalapur A, Duran RS (2007) Langmuir 23:7344

    Google Scholar 

  47. Kalb E, Frey S, Tamm LK (1992) Biochim Biophys Acta 1103:30

    Google Scholar 

  48. Jin Y, Friedman N, sheves M, Cahen D (2007) Adv Funct Mater 17:1417

    Article  CAS  Google Scholar 

  49. Lee GM, Ishihara A, Jacobson KA (1991) Proc Natl Acad Sci USA 88:6274

    Article  CAS  Google Scholar 

  50. Murase K, Fujiwara T, Umemura Y, Suzuki K, Iini R, Yamashita H, Saito M, Murakoshi H, Ritchie K, Kusumi A (2004) Biophys J 86:4075

    Article  CAS  Google Scholar 

  51. Burns AR, Frankel DJ, Buranda T (2005) Biophys J 89:1081

    Article  CAS  Google Scholar 

  52. Kalb E, Frey S, Tamm LK (1992) Biochim Biophys Acta 1103:307

    Article  CAS  Google Scholar 

  53. Fujiwara T, Ritchie K, Jacobson K, Kusumi A (2002) J Cell Biol 157:1071

    Article  CAS  Google Scholar 

  54. Groves JT, Boxer SG, McConnell HM (1997) Proc Natl Acad Sci USA 94:13390

    Article  CAS  Google Scholar 

  55. Groves JT, Ulman N, Boxer SG (1997) Science 275:651

    Article  CAS  Google Scholar 

  56. Groves JT, Boxer SG, McConnell HM (1998) Proc Natl Acad Sci 95:935

    Article  CAS  Google Scholar 

  57. Daniel S, Diaz AJ, Martinez KM, Bench BJ, Albertorio F, Cremer PS (2007) J Am Chem Soc 129:8072

    Article  CAS  Google Scholar 

  58. Filippov A, Orädd G, Lindblom G (2003) Langmuir 19:6397

    Article  CAS  Google Scholar 

  59. Yoshina-Ishii C, Boxer SG (2006) Langmuir 22:2384

    Article  CAS  Google Scholar 

  60. Groves JT, Wülfing C, Boxer SG (1996) Biophys J 71:2716

    CAS  Google Scholar 

  61. Smith EA, Coyn JW, Cowell SM, Tokimoto T, Hruby VJ, Yamamura HI, Wirth MJ (2005) Langmuir 21:9644

    Article  CAS  Google Scholar 

  62. Olson DJ, Johnson JM, Patel PD, Shaqfeh ESG, Boxer SG, Fuller GG (2001) Langmuir 17:7396

    Article  CAS  Google Scholar 

  63. Rädler J, Strey H, Sackmann E (1995) Langmuir 11:4539

    Article  Google Scholar 

  64. Nissen J, Gritsch S, Wiegand G, Rädler JO (1999) Eur Phys J B 10:335

    Article  CAS  Google Scholar 

  65. Nissen J, Jacobs K, Rädler JO (2001) Phys Rev Lett 86:1904

    Article  CAS  Google Scholar 

  66. Nabika H, Sasaki A, Takimoto B, Sawai Y, He S, Murakoshi K (2005) J Am Chem Soc 127:16786

    Article  CAS  Google Scholar 

  67. Suzuki K, Masuhara H (2005) Langmuir 21:537

    Article  CAS  Google Scholar 

  68. Suzuki K, Masuhara H (2005) Langmuir 21:6487

    Article  CAS  Google Scholar 

  69. Nabika H, Fukasawa A, Murakoshi K (2006) Langmuir 22:10927

    Article  CAS  Google Scholar 

  70. Furukawa K, Nakashima H, Kashimura Y, Torimitsu K (2006) Lab Chip 6:1001

    Article  CAS  Google Scholar 

  71. Furukawa K, Sumitomo K, Nakashima H, Kashimura Y, Torimitsu K (2007) Langmuir 23:367

    Article  CAS  Google Scholar 

  72. Leckband D, Israelachvili J (2001) Quart Rev Biophys 34:105

    Article  CAS  Google Scholar 

  73. Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic, London

    Google Scholar 

  74. Ohki S, Ohshima H (1999) Colloid Surf B Biointerfaces 14:27

    Google Scholar 

  75. Takimoto B, Sawai Y, Nabika H, Ajito K, Murakoshi K (2005) Trans Mater Res Soc Jpn 30:561

    CAS  Google Scholar 

  76. Zhang X, Whitney AV, Zhao J, Hicks EM, Van Duyne RP (2006) J Nanosci Nanotechnol 6:1

    Google Scholar 

  77. Nabika H, Takimoto B, Iijima N, Murakoshi K (2008) Electrochim Acta (in press)

  78. Vodyanoy V, Bluestone GL, Longmuir KJ (1990) Biochim Biophys Acta 1047:284

    CAS  Google Scholar 

  79. Vaz WLC, Melo E (2002) J Fluores 11:255

    Article  Google Scholar 

  80. Korlach J, Schwille P, Webb WW, Feigenson GW (1999) Proc Natl Acad Sci USA 96:8461

    Article  CAS  Google Scholar 

  81. Dietrich C, Bagatolli LA, Volovyk ZN, Levi M, Jacobson K, Gratton E (2001) Biophys J 80:1417

    Article  CAS  Google Scholar 

  82. Bacia K, Schwilw P, Kurzchalia T (2005) Proc Natl Acad Sci USA 102:3272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Murakoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabika, H., Takimoto, B. & Murakoshi, K. Molecular separation in the lipid bilayer medium: electrophoretic and self-spreading approaches. Anal Bioanal Chem 391, 2497–2506 (2008). https://doi.org/10.1007/s00216-008-2140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2140-7

Keywords

Navigation