Skip to main content
Log in

A study of oxaliplatin–nucleobase interactions using ion trap electrospray mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Oxaliplatin is an important anti-cancer drug that has been approved for the treatment of colorectal cancer. It is known that oxaliplatin, like other Pt-based drugs, interacts with DNA to form cytotoxic Pt-DNA adducts that disrupt important biological processes such as DNA replication and protein synthesis. Linear ion trap electrospray ionisation mass spectrometry (ESI-MS) was employed to study the interaction of oxaliplatin with DNA nucleobases. It was shown that oxaliplatin formed adducts with all four DNA nucleobases when present individually and in combination in solution. Multiple-stage tandem mass spectrometry (MSn) enabled the fragmentation pathways of each adduct to be established. In addition, proposed structures for each product ion were obtained from the MS data. When all four bases were present together with the drug at near-equal molar concentrations, adducts containing predominantly adenine and guanine were formed, confirming that the drug preferentially binds to these nucleobases. A large molar excess of drug was required to ensure the formation of cytosine and thymine adducts in the presence of adenine and guanine. Even with a large excess of oxaliplatin, only mono-adducts of these nucleobases were observed when all four nucleobases were present.

Schematic of a linear ion trap mass spectrometer being used to isolate the diadduct of guanine with oxaliplatin showing the characteristic isotope pattern due to 194Pt, 195Pt and 196Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 a, b
Fig. 3
Fig. 4
Fig. 5
Fig. 6 a, b
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Dach:

Diaminocyclohexane

CID:

Collision-induced dissociation

ESI-MS:

Electrospray ionisation–mass spectrometry

GMP:

Guanine monophosphate

A:

Adenine

C:

Cytosine

G:

Guanine

T:

Thymine

References

  1. Bell DN, Liu JJ, Tingle MD, McKeage MJ (2006) J Chromatogr B 837:29–34

    Article  CAS  Google Scholar 

  2. Reedijk J (2003) Proc Natl Acad Sci USA 100:3611–3616

    Article  CAS  Google Scholar 

  3. Ta LE, Espeset L, Podratz J, Windebank AJ (2006) Neurotoxicology 27:992–1002

    Article  CAS  Google Scholar 

  4. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  CAS  Google Scholar 

  5. Arnould S, Hennebelle I, Canal P, Bugat R, Guichard S (2003) Eur J Cancer 39:112–119

    Article  CAS  Google Scholar 

  6. Almeida GM, Duarte TL, Steward WP, Jones GDD (2006) DNA Repair 5:219–225

    Article  CAS  Google Scholar 

  7. Chaney SG, Campbell SL, Temple B, Bassett E, Wu Y, Faldu M (2004) J Inorg Biochem 98:1551–1559

    Article  Google Scholar 

  8. Mandal R, Sawyer MB, Li X-F (2006) Rapid Commun Mass Spectrom 20:2533–2538

    Article  CAS  Google Scholar 

  9. Woynarowski JM, Chapman WG, Napier C, Herzig MCS, Juniewicz P (1998) Mol Pharmacol 54:770–777

    Google Scholar 

  10. Rodger A, Patel KK, Sanders KJ, Datt M, Sacht C, Hannon MJ (2002) J Chem Soc Dalton Trans 3656–3663

  11. Garcia Sar D, Montes-Bayón M, Blanco Gonzalez E, Sanz-Medel A (2006) J Anal Atom Spectrom 21:861–868

    Article  CAS  Google Scholar 

  12. Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Chem Rev 106:2224–2248

    Article  CAS  Google Scholar 

  13. Pluim D, Maliepaard M, Van Waardenburg RCAM, Beijnen JH, Schellens JHM (1999) Anal Biochem 275:30–38

    Article  CAS  Google Scholar 

  14. Meczes EL, Azim-Araghi A, Ottley CJ, Pearson DG, Tilby MJ (2005) Biochem Pharmacol 70:1717–1725

    Article  CAS  Google Scholar 

  15. Küng A, Strickmann DB, Galanski M, Keppler BK (2001) J Inorg Biochem 86:691–698

    Article  Google Scholar 

  16. Luo FR, Yen T-Y, Wyrick SD, Chaney SG (1999) J Chromatogr B 724B:345–356

    Google Scholar 

  17. Spingler B, Whittington DA, Lippard SJ (2001) Inorg Chem 40:5596–5602

    Article  CAS  Google Scholar 

  18. Wu YB, Pradhan P, Havener J, Cambell S, Chaney SG (2004) Abs Pap Am Chem Soc 228:U178

    Google Scholar 

  19. Yan X, Watson J, Shing Ho P, Deinzer ML (2004) Mol Cell Proteomics 3:10–23

    Google Scholar 

  20. Raji MA, Frycak P, Beall M, Sakrout M, Ahn J-M, Bao YP, Armstrong DW, Schug KA (2007) Int J Mass Spectrom 262:232–240

    Article  CAS  Google Scholar 

  21. Iijima H, Patrzyc HB, Dawidzik JB, Budzinski EE, Cheng H-C, Freund HG, Box HC (2004) Anal Biochem 333:65–71

    Article  CAS  Google Scholar 

  22. Iannitti-Tito P, Weimann A, Wickham G, Sheil MM (2000) Analyst 125:627–634

    Article  CAS  Google Scholar 

  23. Le Pla RC, Ritchie KJ, Henderson CJ, Wolf CR, Harrington CF, Farmer PB (2007) Chem Res Toxicol 20:1177–1182

    Article  Google Scholar 

  24. Shriver DF, Atkins PW, Langford CH (1994) Inorganic chemistry. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry L. Sharp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerr, S.L., Shoeib, T. & Sharp, B.L. A study of oxaliplatin–nucleobase interactions using ion trap electrospray mass spectrometry. Anal Bioanal Chem 391, 2339–2348 (2008). https://doi.org/10.1007/s00216-008-2128-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2128-3

Keywords

Navigation