Skip to main content
Log in

Circular dichroism thermal lens microscope in the UV wavelength region (UV-CD-TLM) for chiral analysis on a microchip

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have developed a circular-dichroism thermal lens microscope for UV wavelengths (UV-CD-TLM), for the first time, to realize sensitive chiral analysis on a microchip. Quasi-continuous-wave phase modulation of a pulsed UV laser was used to generate left-circularly polarized light and right-circularly polarized light and to detect the generated TL signal amplitude and phase with a lock-in amplifier. The amplitude and phase were used to determine the concentration and chirality, respectively, of a sample. The basic principle of UV-CD-TLM for chiral analysis on a microchip was verified by measuring aqueous solutions of optically active camphorsulfonic acids (CSA). Lower limits of detection (LOD) were calculated at S/= 2 and were 8.7 × 10−4 mol L−1A = 5.2 × 10−6 Abs.) for (+)-CSA and 8.4 × 10−4 mol L−1A = 5.0 × 10−6 Abs.) for (−)-CSA. In terms of number of molecules, LODs for UV-CD-TLM were calculated to be 8.7 fmol and 8.4 fmol, respectively. This is at least three orders of magnitude lower than previously obtained. The applicability of UV-CD-TLM for chiral analysis on a microchip was verified.

Sensitive chiral analysis by thermal lens microscope (TLM)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohashi T, Matsuoka Y, Mawatari K, Kitaoka M, Kitamori T (2006) Proceedings of Micro Total Analysis System 2006. Chemistry and Micro-Nano Systems, Japan, pp 858–860

  2. Jönsson C, Lundgren S, Haswell SJ, Moberg C (2004) Tetrahedron 60:10515–10520

    Article  CAS  Google Scholar 

  3. Abdallah R, Meille V, Shaw J, Wenn D, de Bellefon C (2004) Chem Commun 372–373

  4. Belder D, Ludwig M, Wang LW, Reetz MT (2006) Angew Chem Int Ed 45:2463–2466

    Article  CAS  Google Scholar 

  5. Bobbitt DR, Linder SW (2001) Trends Anal Chem 20:111–123

    Article  CAS  Google Scholar 

  6. Shaw CJ, Huang A, Zhang X (2003) J Chromatogr A 87:439–443

    Article  Google Scholar 

  7. Linder SW, Yanik GW, Bobbitt DR (2004) Microchem J 76:105–112

    Article  CAS  Google Scholar 

  8. Bialkowski SE (1996) Photothermal spectroscopy methods for chemical analysis. Wiley, New York

    Google Scholar 

  9. Dovichi NJ, Harris JM (1979) Anal Chem 51:728–731

    Article  CAS  Google Scholar 

  10. Dovichi NJ, Harris JM (1980) Anal Chem 52:2338–2342

    Article  CAS  Google Scholar 

  11. Dovichi NJ, Harris JM (1980) Anal Chem 52:695A–706A

    Article  Google Scholar 

  12. Dovichi NJ, Harris JM (1981) Anal Chem 53:689–692

    Article  CAS  Google Scholar 

  13. Uchiyama K, Hibara A, Kimura H, Sawada T, Kitamori T (2000) Jpn J Appl Phys 39:5316–5322

    Article  CAS  Google Scholar 

  14. Kitamori T, Tokeshi M, Hibara A, Sato K (2004) Anal Chem 76:52A–60A

    Article  CAS  Google Scholar 

  15. Tokeshi M, Uchida M, Hibara A, Sawada T, Kitamori T (2001) Anal Chem 73:2112–2116

    Article  CAS  Google Scholar 

  16. Mawatari K, Kitamori T, Sawada T (1998) Anal Chem 70:5037–5041

    Article  CAS  Google Scholar 

  17. Hiki S, Mawatari K, Hibara A, Tokeshi M, Kitamori T (2006) Anal Chem 78:2859–2863

    Article  CAS  Google Scholar 

  18. Sato K, Tokeshi M, Odake T, Kimura H, Ooi T, Nakao M, Kitamori T (2000) Anal Chem 72:1144–1147

    Article  CAS  Google Scholar 

  19. Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T (2002) Anal Chem 74:1565–1571

    Article  CAS  Google Scholar 

  20. Hisamoto H, Horiuchi T, Uchiyama K, Tokesh M, Hibara A, Kitamori T (2001) Anal Chem 73:5551–5556

    Article  CAS  Google Scholar 

  21. Sorouraddin HM, Hibara A, Proskurnin MA, Kitamori T (2000) Anal Sci 16:1033–1037

    Article  CAS  Google Scholar 

  22. Yamauchi M, Mawatari K, Hibara A, Tokeshi M, Kitamori T (2006) Anal Chem 78:2646–2650

    Article  CAS  Google Scholar 

  23. Sato K, Tokeshi M, Kitamori T, Sawada T (1999) Anal Sci 15:647–650

    Article  Google Scholar 

  24. Burgi DS, Nolan TG, Risfelt JA, Dovichi NJ (1984) Opt Eng 23:756–758

    CAS  Google Scholar 

  25. Burgi DS, Dovichi NJ (1987) Appl Opt 26:4665–4669

    CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr Haeng-Boo Kim of Ibaraki University for valuable discussion and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Kitamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mawatari, K., Kubota, S. & Kitamori, T. Circular dichroism thermal lens microscope in the UV wavelength region (UV-CD-TLM) for chiral analysis on a microchip. Anal Bioanal Chem 391, 2521–2526 (2008). https://doi.org/10.1007/s00216-008-2006-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2006-z

Keywords

Navigation