Skip to main content
Log in

Binding of nontarget microorganisms from food washes to anti-Salmonella and anti-E. coli O157 immunomagnetic beads: most probable composition of background Eubacteria

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present herein the composition of bacterial communities occurring in ground chicken and the changes which arise in these populations based upon nonselective partitioning by commercially-available Dynal anti-Salmonella and anti-E. coli O157 immunomagnetic beads (IMB). Our enumeration and colony selection protocol was based upon a 6 × 6 drop plate method (n = 18 for each 25-g sub-sampling) using a dilution which resulted in ca. 4–8 colonies per drop. An average of 82 ± 13 colonies were selected from three 25-g ground chicken subsamplings per batch, each of which was repeated seasonally for one year. DNA was extracted from each colony and the composition of Eubacteria in each of these harvests was determined by sequence-based identification of 16S rDNA amplicons. The Gram-positive bacteria Brochothrix thermosphacta and Carnobacterium maltaromticum were the most commonly found organisms in both the total chicken wash (PBS) and in the IMB-bound (PBS-washed) fractions. The remaining background organisms which also adhered to varying degrees to commercial IMBs were: Pseudomonas oleovorans, Acinetobacter lwoffi, Serratia spp., and one Rahnella spp. A large number of the organisms were also cladistically evaluated based on rDNA basepair disparities: all Brochothrices were monophyletic; twelve different Pseudomonads were found along with eight Carnobacteria, seven Acinetobacteres, four Serratiae, and two Rahnellae. Carnobacterium alone showed an IMB-based concentration enhancement (ca. two to sixfold).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guesdon JL, Avrameas S (1977) Immunochemistry 14:443–447

    Article  CAS  Google Scholar 

  2. Haukanes B-I, Kvam C (1993) Bio/technology 11:60–63

    Article  CAS  Google Scholar 

  3. Uhlen M (1989) Nature 340:733–734

    Article  CAS  Google Scholar 

  4. Irwin P, Fortis L, Chau L, Tu S-I (2003) J Rapid Methods Autom Microbiol 10:263–279

    Article  Google Scholar 

  5. Irwin P, Gehring A, Tu S-I, Brewster J, Fanelli J, Ehrenfeld E (2000) J AOAC Int 83:1087–1095

    CAS  Google Scholar 

  6. Solé S, Merkoçi A, Alegret S (2001) Trends Anal Chem 20:102–110

    Article  Google Scholar 

  7. D’Aoust JY, Maishment C (1979) J Food Prot 42:153–157

    Google Scholar 

  8. Tu S-I, Patterson D, Uknalis J, Irwin P (2000) Food Res Int 33:375–380

    Article  CAS  Google Scholar 

  9. Tu S-I, Golden M, Andreotti P, Yu LSL, Irwin P (2001) J Rapid Methods Autom Microbiol 9:71–84

    Article  CAS  Google Scholar 

  10. Cudjoe KS, Krona R, Olsen E (1994) Int J Food Microbiol 23:159–165

    Article  CAS  Google Scholar 

  11. Gottschalk M, Lacouture S, Odierno L (1999) J Clin Microbiol 37:2877–2881

    CAS  Google Scholar 

  12. Crawford CG, Wijey C, Fratamico P, Tu S-I, Brewster J (2000) J Rapid Methods Autom Microbiol 8:249–264

    Article  CAS  Google Scholar 

  13. Irwin P, Gehring A, Tu S-T, Chen C-Y (2004) Carbohydr Res 339:613–621

    Article  CAS  Google Scholar 

  14. Marshall KC, Stout R, Mitchell R (1971) J Gen Microbiol 68:337–348

    CAS  Google Scholar 

  15. Otto K, Elwing H, Hermansson M (1999) J Bacteriol 181:5210–5218

    CAS  Google Scholar 

  16. Gilbert P, Evans DJ, Evans E, Duguld IG, Brown MRW (1991) J App Bacteriol 71:72–77

    CAS  Google Scholar 

  17. Medina MB (2001) Int J Food Microbiol 69:199–208

    Article  CAS  Google Scholar 

  18. Ripabelli G, Sammarco ML, Grasso GM (1999) J Food Prot 62:198–201

    CAS  Google Scholar 

  19. Irwin P, Damert W, Brewster J, Gehring A, Tu S-I (2002) J Rapid Methods Autom Microbiol 10:129–147

    Article  Google Scholar 

  20. Tu S-I, Uknalis J, Gore M, Irwin P, Feder I (2003) J Rapid Methods Autom Microbiol 11:35–46

    Google Scholar 

  21. Irwin P, Damert W, Tu S-I (2004) J Rapid Methods Autom Microbiol 11:265–284

    Article  Google Scholar 

  22. Batteiger B, Newhall WJ, Jones RB (1982) J Immunol Methods 55:297–307

    Article  CAS  Google Scholar 

  23. Spinola SM, Cannon JG (1985) J Immunol Methods 81:161–165

    Article  CAS  Google Scholar 

  24. Haycock JW (1993) Anal Biochem 208:397–399

    Article  CAS  Google Scholar 

  25. Shmanai VV (1999) J Immunoassay 20:13–30

    Article  CAS  Google Scholar 

  26. Sakaki S, Iwasaki Y, Nakabayashi N, Ishihara K (2000) Polym J 32:637–641

    Article  CAS  Google Scholar 

  27. Michalewski MP, Kaczmarski W, Golabek A, Kida E, Kaczmarski A, Wisniewski KE (1999) Anal Biochem 276:254–257

    Article  CAS  Google Scholar 

  28. Gehring AG, Crawford CG, Mazenko RS, Van Houten LJ, Brewster JD (1996) J Immunol Methods 195:15–25

    Article  CAS  Google Scholar 

  29. Aguilera A, Gonzalez-Gil S, Keafer BA, Anderson DM (1996) Mar Ecol Prog Ser 143:255–269

    Article  Google Scholar 

  30. Granot E (1994) J Clin Lab Immunol 43:183–186

    Google Scholar 

  31. Irwin P, Fortis L, Tu S (2001) J Rapid Methods Autom Microbiol 9:33–51

    Article  Google Scholar 

  32. Chen C, Nace G, Irwin P (2003) J Microbiol Methods 55:475–479

    Article  CAS  Google Scholar 

  33. Irwin PL, Nguyen L-HT, Chen C-Y (2007) accompanying manuscript: Binding of nontarget microorganisms from food washes to anti-Salmonella and anti-E. coli O157 immunomagnetic beads: minimizing the errors of random sampling in extreme dilute systems

  34. de Levie R (2004) Advanced excel for scientific data analysis. Oxford University Press, Oxford, UK, 615 pp

  35. Cottrell E, Kirchman D (2000) Appl Environ Microbiol 66:5116–5122

    Article  CAS  Google Scholar 

  36. Thompson J, Higgins D, Gibson T (1994) Nucl Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  37. Tamplin M (2002) J Food Prot 65:1535–1540

    Google Scholar 

  38. Holt J, Krieg N, Sneath P, Staley J, Williams S (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, 787 pp

  39. Prest A, Hammond J, Stewart G (1994) Appl Environ Microbiol 60:1635–1640

    CAS  Google Scholar 

  40. Farmer J III, Fanning G, Huntley-Carter G, Holmes B, Hickman F, Richard C, Brenner D (1981) J Clin Microbiol 13:919–933

    Google Scholar 

  41. Piette J, Idziak E (1991) Biofouling 5:3–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Irwin.

Additional information

Any reference to a brand or firm name does not constitute endorsement of the US Department of Agriculture over others of a similar nature not mentioned

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irwin, P., Nguyen, LH., Chen, CY. et al. Binding of nontarget microorganisms from food washes to anti-Salmonella and anti-E. coli O157 immunomagnetic beads: most probable composition of background Eubacteria. Anal Bioanal Chem 391, 525–536 (2008). https://doi.org/10.1007/s00216-008-1959-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1959-2

Keywords

Navigation