Skip to main content
Log in

The effects of mass accuracy, data acquisition speed, and search algorithm choice on peptide identification rates in phosphoproteomics

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Proteomic analyses via tandem mass spectrometry have been greatly enhanced by the recent development of fast, highly accurate instrumentation. However, successful application of these developments to high-throughput experiments requires careful optimization of many variables which adversely affect each other, such as mass accuracy and data collection speed. We examined the performance of three shotgun-style acquisition methods ranging in their data collection speed and use of mass accuracy in identifying proteins from yeast-derived complex peptide and phosphopeptide-enriched mixtures. We find that the combination of highly accurate precursor masses generated from one survey scan in the FT-ICR cell, coupled with ten data-dependent tandem MS scans in a lower-resolution linear ion trap, provides more identifications in both mixtures than the other examined methods. For phosphopeptide identifications in particular, this method identified over twice as many unique phosphopeptides as the second-ranked, lower-resolution method from triplicate 90-min analyses (744 ± 50 vs. 308 ± 50, respectively). We also examined the performance of four popular peptide assignment algorithms (Mascot, Sequest, OMSSA, and Tandem) in analyzing the results from both high-and low-resolution data. When compared in the context of a false positive rate of approximately 1%, the performance differences between algorithms were much larger for phosphopeptide analyses than for an unenriched, complex mixture. Based upon these findings, acquisition speed, mass accuracy, and the choice of assignment algorithm all largely affect the number of peptides and proteins identified in high-throughput studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Syka JE, Marto JA, Bai DL, Horning S, Senko MW, Schwartz JC, Ueberheide B, Garcia B, Busby S, Muratore T, Shabanowitz J, Hunt DF (2004) J Proteome Res 3:621–626

    Article  CAS  Google Scholar 

  2. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ (2002) Nature 419:520–526

    Article  CAS  Google Scholar 

  3. Everley PA, Bakalarski CE, Elias JE, Waghorne CG, Beausoleil SA, Gerber SA, Faherty BK, Zetter BR, Gygi SP (2006) J Proteome Res 5:1224–1231

    Article  CAS  Google Scholar 

  4. Lasonder E, Ishihama Y, Andersen JS, Vermunt AM, Pain A, Sauerwein RW, Eling WM, Hall N, Waters AP, Stunnenberg HG, Mann M (2002) Nature 419:537–542

    Article  CAS  Google Scholar 

  5. Dieguez-Acuna FJ, Gerber SA, Kodama S, Elias JE, Beausoleil SA, Faustman D, Gygi SP (2005) Mol Cell Proteomics 4:1459–1470

    Article  CAS  Google Scholar 

  6. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Proc Natl Acad Sci USA 101:12130–12135

    Article  CAS  Google Scholar 

  7. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) Nat Biotechnol 24:1285–1292

    Article  CAS  Google Scholar 

  8. Villen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Proc Natl Acad Sci USA 104:1488–1493

    Article  CAS  Google Scholar 

  9. Li X, Gerber SA, Rudner AD, Beausoleil SA, Haas W, Villen J, Elias JE, Gygi SP (2007) J Proteome Res 6:1190–1197

    Article  CAS  Google Scholar 

  10. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Cell 127:635–648

    Article  CAS  Google Scholar 

  11. Olsen JV, Ong SE, Mann M (2004) Mol Cell Proteomics 3:608–614

    Article  CAS  Google Scholar 

  12. Mayya V, Rezaul K, Cong YS, Han D (2005) Mol Cell Proteomics 4:214–223

    CAS  Google Scholar 

  13. Haas W, Faherty BK, Gerber SA, Elias JE, Beausoleil SA, Bakalarski CE, Li X, Villen J, Gygi SP (2006) Mol Cell Proteomics 5:1326–1337

    Article  CAS  Google Scholar 

  14. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Electrophoresis 20:3551–3567

    Article  CAS  Google Scholar 

  15. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) J Proteome Res 3:958–964

    Article  CAS  Google Scholar 

  16. Eng JK, McCormack AL, Yates I, John R (1994) J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  17. Craig R, Beavis RC (2004) Bioinformatics 20:1466–1467

    Article  CAS  Google Scholar 

  18. Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Academic, San Diego

    Book  Google Scholar 

  19. Mortimer RK, Johnston JR (1986) Genetics 113:35–43

    CAS  Google Scholar 

  20. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  21. Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R (2004) Nat Biotechnol 22:1459–1466

    Article  CAS  Google Scholar 

  22. Elias JE, Gygi SP (2007) Nat Methods 4:207–214

    Article  CAS  Google Scholar 

  23. Elias JE, Haas W, Faherty BK, Gygi SP (2005) Nat Methods 2:667–675

    Article  CAS  Google Scholar 

  24. Liu H, Sadygov RG, Yates JR 3rd (2004) Anal Chem 76:4193–4201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health Grants GM67945 and HG3456 (to S. P. G.). We would like to thank J. Elias, J. Mintseris, J. Villen, and S. Beausoleil for helpful advice and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Gygi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakalarski, C.E., Haas, W., Dephoure, N.E. et al. The effects of mass accuracy, data acquisition speed, and search algorithm choice on peptide identification rates in phosphoproteomics. Anal Bioanal Chem 389, 1409–1419 (2007). https://doi.org/10.1007/s00216-007-1563-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1563-x

Keywords

Navigation