Skip to main content
Log in

In vitro translation with [34S]-labeled methionine, selenomethionine, and telluromethionine

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Heteroisotope and heteroatom tagging with [34S]-enriched methionine (Met), selenomethionine (SeMet), and telluromethionine (TeMet) was applied to in vitro translation. Green fluorescent protein (GFP) and JNK stimulatory phosphatase-1 (JSP-1) genes were translated with wheat germ extract (WGE) in the presence of Met derivatives. GFPs containing Met derivatives were subjected to HPLC coupled with treble detection, i.e., a photodiode array detector, a fluorescence detector, and an inductively coupled plasma mass spectrometer (ICP-MS). The activities of JSP-1-containing Met derivatives were also measured. GFP and JSP-1 containing [34S]-Met and SeMet showed comparable fluorescence intensities and enzyme activities to those containing naturally occurring Met. TeMet was unstable and decomposed in WGE, whereas SeMet was stable throughout the experimental period. Thus, although Te was the most sensitive to ICP-MS detection among S, Se, and Te, TeMet was less incorporated into the proteins than Met and SeMet. Finally, the potential of heteroisotope and heteroatom tagging of desired proteins in in vitro translation followed by ICP-MS detection was discussed.

TeMet was less incorporated into GFP than Met and SeMet due to its instability in WGE

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sanz-Medel A (2005) Anal Bioanal Chem 381:1–2

    Article  CAS  Google Scholar 

  2. Sanz-Medel A, Montes-Bayón M, Fernández Sánchez ML (2003) Anal Bioanal Chem 377:236–247

    Article  CAS  Google Scholar 

  3. Łobiński R, Schaumlöffel D, Szpunar J (2006) Mass Spectrom Rev 25:255–289

    Article  Google Scholar 

  4. Szpunar J (2005) Analyst 130:442–465

    Article  CAS  Google Scholar 

  5. Pereira Navaza A, Ruiz Encinar J, Sanz-Medel A (2007) Angew Chem Int Ed Engl 46:569–571

    Article  CAS  Google Scholar 

  6. Michalke B, Schramel P (1999) Electrophoresis 20:2547–2553

    Article  CAS  Google Scholar 

  7. Baranov VI, Quinn Z, Bandura DR, Tanner SD (2002) Anal Chem 74:1629–1636

    Article  CAS  Google Scholar 

  8. Nojima T, Kondoh Y, Takenaka S, Ichihara T, Takagi M, Tashiro H, Matsumoto K (2001) Nucleic Acids Res Suppl 1:105–106

    Google Scholar 

  9. Matsumoto K, Yuan J, Wang G, Kimura H (1999) Anal Biochem 276:81–87

    Article  CAS  Google Scholar 

  10. Suzuki KT (2005) J Health Sci 51:107–114

    Article  CAS  Google Scholar 

  11. B’Hymer C, Caruso JA (2006) J Chromatogr A 1114:1–20

    Article  CAS  Google Scholar 

  12. Meija J, Montes-Bayón M, Caruso JA, Sanz-Medel A (2006) Trends Anal Chem 25:44–51

    Article  CAS  Google Scholar 

  13. Birringer M, Pilawa S, Flohé L (2002) Nat Prod Rep 19:693–718

    Article  CAS  Google Scholar 

  14. O’Gara M, Adams GM, Gong W, Kobayashi R, Blumenthal RM, Cheng X (1997) Eur J Biochem 247:1009–1018

    Article  CAS  Google Scholar 

  15. Pavlov MY, Ehrenberg M (1996) Arch Biochem Biophys 328:9–16

    Article  CAS  Google Scholar 

  16. Madin K, Sawasaki T, Ogasawara T, Endo Y (2000) Proc Natl Acad Sci USA 97:559–564

    Article  CAS  Google Scholar 

  17. Schindler PT, Macherhammer F, Arnold S, Reuss M, Siemann M (1999) Electrophoresis 20:806–812

    Article  CAS  Google Scholar 

  18. Yokota T, Nara Y, Kashima A, Matsubara K, Misawa S, Kato R, Sugio S (2007) Proteins 66:272–278

    Article  CAS  Google Scholar 

  19. Schindler PT, Baumann S, Reuss M, Siemann M (2000) Electrophoresis 21:2606–2609

    Article  CAS  Google Scholar 

  20. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Gene 111:229–233

    Article  CAS  Google Scholar 

  21. Knapp FF Jr (1979) J Org Chem 44:1007–1009

    Article  CAS  Google Scholar 

  22. Ogra Y, Ishiwata K, Suzuki KT (2005) Anal Chim Acta 554:123–129

    Article  CAS  Google Scholar 

  23. Divjak B, Goessler W (1999) J Chromatogr A 844:161–169

    Article  CAS  Google Scholar 

  24. Koplík R, Pavelková H, Cincibuchová J, Mestek O, Kvasnika F, Suchánek M (2002) J Chromatogr B Anal Technol Biomed Life Sci 770:261–273

    Article  Google Scholar 

  25. Suzuki KT, Yoneda S, Itoh M, Ohmichi M (1995) J Chromatogr B Biomed Sci Appl 670:63–71

    Article  CAS  Google Scholar 

  26. Boles JO, Lebioda L, Dunlap RB, Odom JD (1995) SAAS Bull Biochem Biotechnol 8:29–34

    CAS  Google Scholar 

  27. Budisa N, Karnbrock W, Steinbacher S, Humm A, Prade L, Neuefeind T, Moroder L, Huber R (1997) J Mol Biol 25:616–623

    Article  Google Scholar 

  28. Kigawa T, Yamaguchi-Nunokawa E, Kodama K, Matsuda T, Yabuki T, Matsuda N, Ishitani R, Nureki O, Yokoyama S (2002) J Struct Funct Genomics 2:29–35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 16689005, 16209004, and 19390033), and the financial support from Agilent Technologies Foundation, USA. We also wish to thank ZOEGENE Co. for the in vitro translation kit and control mRNA, and Showa Denko for the HPLC system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumitsu Ogra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogra, Y., Kitaguchi, T., Suzuki, N. et al. In vitro translation with [34S]-labeled methionine, selenomethionine, and telluromethionine. Anal Bioanal Chem 390, 45–51 (2008). https://doi.org/10.1007/s00216-007-1546-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1546-y

Keywords

Navigation