Skip to main content

Advertisement

Log in

Modeling and simulation of chemo-electro-mechanical behavior of pH-electric-sensitive hydrogel

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A chemo-electro-mechanical multi-field model, termed the multi-effect-coupling pH-electric-stimuli (MECpHe) model, has been developed to simulate the response behavior of smart hydrogels subject to pH and electric voltage coupled stimuli when the hydrogels are immersed in a pH buffer solution subject to an externally applied electric field. The MECpHe model developed considers multiphysics effects and formulates the fixed charge density with the coupled buffer solution pH and electric voltage effects, expressed by a set of nonlinear partial differential governing equations. The model can be used to predict the hydrogel displacement and the distributive profiles of the concentrations of diffusive ionic species and the electric potential and the fixed charge density in both the hydrogels and surrounding solution. After validation of the model by comparison of current numerical results with experiment data extracted from the literature, one-dimensional steady-state simulations were carried out for equilibrium of the smart hydrogels subject to pH and electric coupled stimuli. The effects of several important physical conditions, including the externally applied electric voltage, on the distributions of the concentrations of diffusive ionic species, the electric potential, the fixed charge density, and the displacement of the hydrogel strip were studied in detail. The effects of the ionic strength on the bending deformation of the hydrogels under the solution pH and electric voltage coupled stimuli are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tanaka T, Fillmore D, Sun S-T, Nishio I, Swislow G, Shah A (1980) Phys Rev Lett 45:1636–1639

    Article  CAS  Google Scholar 

  2. Tanaka T, Nishio I, Sun ST, Nishio I (1982) Science 218:467–469

    Article  CAS  Google Scholar 

  3. Siegel RA, Firestone BA (1988) Macromolecules 21:3254–3259

    Article  CAS  Google Scholar 

  4. Kwon IC, Bae YH, Kim SW (1991) Nature 354:291–293

    Article  CAS  Google Scholar 

  5. Osada Y, Okuzaki H, Hori H (1992) Nature 355:242–244

    Article  CAS  Google Scholar 

  6. Chen G, Hoffman AS (1995) Nature 373:49–52

    Article  CAS  Google Scholar 

  7. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Nature 374:240–242

    Article  CAS  Google Scholar 

  8. Li H, Wang XG, Yan GP, Lam KY, Cheng SX, Zou T, Zhuo RX (2005) Chem Phys 309:201–208

    Article  CAS  Google Scholar 

  9. Li H, Wang XG, Wang ZJ, Lam KY (2005) Macromol Biosci 5:904–914

    Article  CAS  Google Scholar 

  10. Li H, Wang ZJ, Wang XG, Lam KY (2005) Biophys Chem 118:57–68

    Article  CAS  Google Scholar 

  11. Beebe DJ, Moore J, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Nature 404:588–590

    Article  CAS  Google Scholar 

  12. Qiu Y, Park K (2001) Adv Drug Del Rev 53:321–339

    Article  CAS  Google Scholar 

  13. Hu Z, Lu X, Gao J, Wang C (2000) Adv Mater 12:1173–1176

    Article  CAS  Google Scholar 

  14. Gutowska A, Bae YH, Jacobs H, Jan FJ, Kim SW (1994) Macromolecules 27:4167–4175

    Article  CAS  Google Scholar 

  15. Shin BC, Kim SS, Ko JK, Jegul J, Lee BM (2003) Eur Polym J 39:579–584

    Article  CAS  Google Scholar 

  16. Peppas NA (1991) J Bioactive Compatible Polym 6:241–246

    Article  CAS  Google Scholar 

  17. Kaetsu I, Uchida K, Morita Y, Oku M (1992) Int J Radiat Appl Instrum Part C Radiat Phys Chem 40:157–160

    Article  CAS  Google Scholar 

  18. Kaetsu I (1995) Radiat Phys Chem 46:247–256

    Article  CAS  Google Scholar 

  19. Schreyer HB, Gebhart N, Kim KJ, Shahinpoor M (2000) Biomacromolecules 1:642–647

    Article  CAS  Google Scholar 

  20. Kim SJ, Lee KJ, Kim SI, Lee YM, Chung TD, Lee SH (2003) J Appl Polym Sci 89:2301–2305

    Article  CAS  Google Scholar 

  21. Jin X, Hsieh YL (2005) Polymer 46:5149–5160

    Article  CAS  Google Scholar 

  22. Sawai T, Shinohara H, Ikariyama Y, Aizawa M (1991) J Electroanal Chem 297:399–407

    Article  CAS  Google Scholar 

  23. Shiga T, Hirose Y, Okada A, Kurauchi T (1992) J Appl Polym Sci 46:635–640

    Article  CAS  Google Scholar 

  24. Kim SJ, Lee CK, Lee YM, Kim IY, Kim SI (2003) Reactive Function Polym 55:291–298

    Article  CAS  Google Scholar 

  25. Kim SJ, Yoon SG, Lee SM, Lee SH, Kim SI (2004) J Appl Polym Sci 91:3613–3617

    Article  CAS  Google Scholar 

  26. Kim SJ, Lee CK, Kim SI (2004) J Appl Polym Sci 92:1731–1736

    Article  CAS  Google Scholar 

  27. Ali AE, El-Rehim A, Hegazy EA, Ghobashy MM (2006) Radiat Phys Chem 75:1041–1046

    Article  CAS  Google Scholar 

  28. Gu WY, Lai WM, Mow VC (1999) Transp Porous Media 34:143–157

    Article  CAS  Google Scholar 

  29. Wallermersperger T, Kroplin B, Holdenried J, Gulch RW (2001) A coupled multi-field formulation for ionic gels in electric fields, vol 4329. In: Bar-Cohen Y (ed) Proceedings of the SPIE 8th Annual International Symposium on Smart Structure and Materials. SPIE, Newport Beach CA, pp 264–275

    Google Scholar 

  30. Zhou X, Hou YC, Sun S, Mak AFT (2002) Smart Mater Struct 11:459–467

    Article  CAS  Google Scholar 

  31. Li H, Chen J, Lam KY (2004) J Polym Sci B 42:1514–1531

    Article  CAS  Google Scholar 

  32. Tamagawa H, Taya M (2000) Mater Sci Eng A 285:314–325

    Article  Google Scholar 

  33. Li H, Yuan Z, Lam KY, Lee HP, Chen J, Hanes J, Fu J (2004) Biosens Bioelectron 19:1097–1107

    Article  CAS  Google Scholar 

  34. Li H, Chen J, Lam KY (2006) Biomacromolecules 7:1951–1959

    Article  CAS  Google Scholar 

  35. Li H, Chen J, Lam KY (in press) Biosens Bioelectron

  36. Shiga T, Kurauchi T (1990) J Appl Polym Sci 39:2305–2320

    Article  CAS  Google Scholar 

  37. Yang YJ, Engberts J (2000) Colloids Surf A 169:85–94

    Article  CAS  Google Scholar 

  38. Li H, Ng TY, Yew YK, Lam KY (2005) Biomacromolecules 6:109–120

    Article  CAS  Google Scholar 

  39. Li H, Yew YK, Ng TY, Lam KY (2005) J Electroanal Chem 580:161–172

    Article  CAS  Google Scholar 

  40. Horst HC, Timmer JMK, Robbertsen T, Leenders J (1995) J Membr Sci 104:205–218

    Article  Google Scholar 

  41. Nikonenko V, Ebedev KL, Manzanares JA, Pourcelly G (2003) Electrochim Acta 48:3639–3650

    Article  CAS  Google Scholar 

  42. Luca GD, Glavinovi MI (in press) Biochim Biophys Acta

  43. Hon YC, Lu MW, Xue WM, Zhou X (1999) Comput Mech 24:155–165

    Article  Google Scholar 

  44. Li H, Ng TY, Cheng JQ, Lam KY (2003) Comput Mech 33:30–41

    Article  CAS  Google Scholar 

  45. Liu GR (2002) Mesh free methods: moving beyond the finite element method. CRC Press, New York

    Google Scholar 

  46. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin Heidelberg New York

    Google Scholar 

  47. Homma M, Seida Y, Nakano Y (2001) J Appl Polym Sci 82:76–80

    Article  CAS  Google Scholar 

  48. Wallmersperger T, Kroeplin B (2001) Modeling and analysis of the chemistry and electromechanics. In: Bar-Cohen Y (ed) Electroactive polymer actuators as artificial muscles. SPIE Press, pp 285–307

  49. Yin WS, Li J, Gu TR, Wu JP (1997) J Appl Polym Sci 63:13–16

    Article  CAS  Google Scholar 

  50. Bashir R, Hilt JZ, Elibol O, Gupta A, Peppas NA (2002) Appl Phys Lett 81:3091–3093

    Article  CAS  Google Scholar 

  51. Rong WZ, Pelling AE, Ryan A, Gilzewski JK, Friedlander SK (2004) Nano Lett 4:2287–2292

    Article  CAS  Google Scholar 

  52. Doi M, Matsumoto M, Hirose Y (1992) Macromolecules 25:5504–5511

    Article  CAS  Google Scholar 

  53. Chiarelli P, Rossi D (1996) Polym Gels Network 4:499–508

    Article  CAS  Google Scholar 

  54. Carlson KT, Setton LA, Chilkoti A (2003) Biomacromolecules 4:572–580

    Article  CAS  Google Scholar 

  55. Li H, Luo RM, Lam KY (2007) J Biomech 40:1091–1098

    Article  Google Scholar 

  56. Bajpai SK (2001) J Appl Polym Sci 80:2782–2789

    Article  CAS  Google Scholar 

  57. Li H, Luo RM, Lam KY (2007) J Membr Sci 289:284–296

    Article  CAS  Google Scholar 

  58. Lam KY, Li H, Ng TY, Luo RM (2006) Eng Anal Boundary Elem 30:1011–1017

    Article  Google Scholar 

  59. Liu GQ, Zhao XP (2005) J Macromol Sci 42:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge financial support from the Agency for Science, Technology, and Research (A*STAR) of Singapore through A*STAR SERC Grant – SRP on MEMS Phase II under the project number: 022 107 0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, R., Li, H. & Lam, K.Y. Modeling and simulation of chemo-electro-mechanical behavior of pH-electric-sensitive hydrogel. Anal Bioanal Chem 389, 863–873 (2007). https://doi.org/10.1007/s00216-007-1483-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1483-9

Keywords

Navigation