Skip to main content
Log in

Collision-induced reporter fragmentations for identification of covalently modified peptides

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Collision-induced reporter fragmentations of the currently most important covalent peptide modifications as detected by tandem mass spectrometry are summarized. These fragmentations comprise the formation of reporter ions, which are preferentially immonium ions, immonium ion-derived fragments or side chain fragments. In addition, the reporter neutral loss reactions for covalently modified amino acid residues are summarized. For each individual covalent modification which can be recognized by a reporter fragmentation, the accurate mass shift and the gross formula shift of the modified amino acid residue are given. The same set of data is provided for the reporter fragmentations. Finally, an extensive accurate mass and gross formula list is presented as supplementary material, describing mostly regular and modified y1 and dipeptide a and b ions, which are helpful for identification of the peptide ends of covalently modified peptides.

When modified peptides are fragmented by collision-induced dissociation in a tandem mass spectrometer, the modification is either lost as part of a charged fragment, so that a reporter ion for the modification is generated or it is lost as part of a neutral fragment, so that a modification-specific reporter neutral loss is observed in the fragment ion spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walsh CT, Garneau-Tsodikova S, Gatto GJ (2005) Angew Chem Int Ed Engl 44:7342–7372

    Article  CAS  Google Scholar 

  2. Nielsen ML, Savitski MM, Zubarev RA (2006) Mol Cell Proteomics 5:2384–2391

    Article  CAS  Google Scholar 

  3. Vachet RW, Glish GL (1998) Anal Chem 70:340–346

    Article  CAS  Google Scholar 

  4. Spickett CM, Pitt AR, Morrice N, Kolch W (2006) Biochim Biophys Acta 1764:1823–1841

    CAS  Google Scholar 

  5. Lu XM, Lu M, Tompkins RG, Fischman AJ (2005) J Mass Spectrom 40:1140–1148

    Article  CAS  Google Scholar 

  6. Shen B, English AM (2005) Biochemistry 44:14030–14044

    Article  CAS  Google Scholar 

  7. Jacob C, Knight I, Winyard PG (2006) Biol Chem 387:1385–1397

    Article  CAS  Google Scholar 

  8. Jia Y, Buehler PW, Boykinsa RA, Venable RM, Alayash AI (2007) J Biol Chem 282:4894–4907

    Article  CAS  Google Scholar 

  9. Rabilloud T, Heller M, Gasnier F, Luche S, Rey C, Aebersold R, Benahmed M, Lousot P, Lunardi J (2002) J Biol Chem 277:19369–19401

    Article  CAS  Google Scholar 

  10. Wagner E, Luche S, Penna L, Chevallet M, vanDorsselaer A, Leize-Wagner E, Rabilloud T (2002) Biochem J 366:777–785

    CAS  Google Scholar 

  11. Musante L, Candiano G, Petretto A, Bruschi M, Dimasi N, Caridi G, Pavone B, Del Boccio P, Galloiano M, Urbani A, Scolari F, Vinventi F, Ghiggeri M (2007) J Am Soc Nephrol 18:799–810

    Article  CAS  Google Scholar 

  12. Swiderek KM, Davis MT, Lee TD (1998) Electrophoresis 19:989–997

    Article  CAS  Google Scholar 

  13. Steen H, Mann M (2001) J Am Soc Mass Spectrom 12:228–232

    Article  CAS  Google Scholar 

  14. Salek M, Lehmann WD (2003) J Mass Spectrom 38:1143–1149

    Article  CAS  Google Scholar 

  15. Hoffman MD, Kast J (2006) J Mass Spectrom 41:229–241

    Article  CAS  Google Scholar 

  16. Lapko VN, Cernz RL, Smith DL, Smith JB (2005) Protein Sci 14:45–54

    Article  CAS  Google Scholar 

  17. Medzihradsky KF, Darula Z, Persson E, Fainzilber M, Chalkley RJ, Ball H, Greenbaum D, Bogyo M, Tyson DR, Bradshaw RA, Burlingame AL (2004) Mol Cell Proteomics 3:429–443

    Article  CAS  Google Scholar 

  18. Raftery MJ (2005) Rapid Commun Mass Spectrom 19:674–682

    Article  CAS  Google Scholar 

  19. Geoghegan KF, Hoth LR, Tan DH, Borzilleri KA, Withka JM, Boyd JG (2002) J Proteome Res 1:181–187

    Article  CAS  Google Scholar 

  20. Petrotchenko EV, Pasek D, Elms P, Dokholyan NV, Meisnner G, Borchers CH (2006) Anal Chem 78:7959–7966

    Article  CAS  Google Scholar 

  21. Krüger R, Hung CW, Edelson-Averbukh M, Lehmann WD (2005) Rapid Commun Mass Spectrom 19:1709–1716

    Article  CAS  Google Scholar 

  22. Martin C, Zhang Y (2005) Nat Rev Mol Cell Biol 6:838–849

    Article  CAS  Google Scholar 

  23. Fenaille F, Tabet J-C, Guy PA (2004) Rapid Commun Mass Spectrom 18:67–76

    Article  CAS  Google Scholar 

  24. Yalcin T, Harrison AG (1996) J Mass Spectrom 31:1237–1243

    Article  CAS  Google Scholar 

  25. Zhang K, Yau PM, Chandrasekhar B, New R, Kondrat R, Imai BS, Bradbury ME (2004) Proteomics 4:1–10

    Article  CAS  Google Scholar 

  26. Fu Q, Li L (2005) Anal Chem 77:7783–7795

    Article  CAS  Google Scholar 

  27. Kim JY, Kim KW, Kwon HJ, Lee DW, Yoo JS (2002) Anal Chem 74:5443–5449

    Article  CAS  Google Scholar 

  28. Frolov A, Hoffmann P, Hoffmann R (2006) J Mass Spectrom 41:1459–1469

    Article  CAS  Google Scholar 

  29. Metz B, Kersten GF, Hoogerhout P, Brugghe HF, Timmermans HAM, de Jong A, Meiring H, ten Hove J, Hennink WE, Crommelin DJA, Jiskoot W (2004) J Biol Chem 279:6235–6243

    Article  CAS  Google Scholar 

  30. Borchers C, Parker CE, Deterding LJ, Tomer KB (1999) J Chromatogr A 854:119–130

    Article  CAS  Google Scholar 

  31. Gehrig PM, Hunziker PE, Zahariev S, Pongor S (2004) J Am Soc Mass Spectrom 15:142–149

    Article  CAS  Google Scholar 

  32. Rappsilber J, Friesen WJ, Paushkin S, Dreyfuss G, Mann M (2003) Anal Chem 75:3107–3114

    Article  CAS  Google Scholar 

  33. Brame CJ, Moran MF, McBroom-Cerajewski DB (2004) Rapid Commun Mass Spectrom 18:877–881

    Article  CAS  Google Scholar 

  34. Steen H, Mann M (2002) Anal Chem 74:6230–6236

    Article  CAS  Google Scholar 

  35. Huddleston MJ, Annan RS, Bean MF, Carr SA (1993) J Am Soc Mass Spectrom 4:710–717

    Article  CAS  Google Scholar 

  36. Carr SA, Huddleston MJ, Annan RS (1996) Anal Biochem 239:180–192

    Article  CAS  Google Scholar 

  37. Tholey A, Reed J, Lehmann WD (1999) J Mass Spectrom 34:117–123

    Article  CAS  Google Scholar 

  38. Lehmann WD, Krüger R, Salek M, Hung CW, Wolschin F, Weckwerth W (2007) J Proteome Res 6:2866–2873

    Article  CAS  Google Scholar 

  39. Edelson-Averbukh M, Pipkorn R, Lehmann WD (2006) Anal Chem 78:1249–1256

    Article  CAS  Google Scholar 

  40. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Proteomics 4:1633–1649

    Article  CAS  Google Scholar 

  41. Jebanathirajah J, Steen H, Roepstorff P (2003) J Am Soc Mass Spectrom 14:777–784

    Article  CAS  Google Scholar 

  42. Rogalski JC, Kast J (2005) Rapid Commun Mass Spectrom 19:77–78

    Article  CAS  Google Scholar 

  43. Geyer H, Geyer R (2006) Biochim Biophys Acta 1764:1853–1869

    CAS  Google Scholar 

  44. Peter-Katalinic J (2005) Methods Enzymol 405:139–171

    CAS  Google Scholar 

  45. Wuhrer M, Catalina MI, Deelder AM, Hooke CH (2007) J Chromatogr B 849:115–128

    Article  CAS  Google Scholar 

  46. Monigatti F, Hekking B, Steen H (2006) Biochim Biophys Acta 1764:1904–1913

    CAS  Google Scholar 

  47. Rappsilber J, Steen H, Mann M (2001) J Mass Spectrom 36:832–833

    Article  CAS  Google Scholar 

  48. Salek M, Costagliola S, Lehmann WD (2004) Anal Chem 76:5136–5142

    Article  CAS  Google Scholar 

  49. Lehmann WD (1999) In: Proceedings of the 32nd Diskussionstagung der DGMS, Oldenburg, p 112

  50. Salek M, Alonso A, Pipkorn R, Lehmann WD (2003) Anal Chem 75:2724–2729

    Article  CAS  Google Scholar 

  51. Steen H, Kuster B, Fernandez M, Pandey A, Mann M (2001) Anal Chem 73:1440–1448

    Article  CAS  Google Scholar 

  52. Steen H, Fernandez M, Ghaffari S, Pandey A, Mann M (2003) Mol Cell Proteomics 2:138–145

    Article  CAS  Google Scholar 

  53. Petterson AS, Steen H, Kalume DE, Caidahl K, Roepstorff P (2001) J Mass Spectrom 36:616–625

    Article  Google Scholar 

  54. Salek M, Lehmann WD (2005) Proteomics 5:351–353

    Article  CAS  Google Scholar 

  55. Gaut JP, Byun J, Tran HD, Heinecke JW (2002) Anal Biochem 300:252–259

    Article  CAS  Google Scholar 

  56. Bienvenut WV, Déon C, Pasquarello C, Campbell JM, Sanchez J-C, Vestal ML, Hochstrasser DF (2002) Proteomics 2:868–876

    Article  CAS  Google Scholar 

  57. Zhang H, Joseph J, Crow J, Kalyanaraman B (2004) Free Radic Biol Med 37:2018–2026

    Article  CAS  Google Scholar 

  58. Kahlhor HR, Niewmierzycka A, Faull KF, Yao XY, Grade S, Clarke S, Rubenstein PA (1999) Arch Biochem Biophys 370:105–111

    Article  Google Scholar 

  59. Uchida K, Kawakishi S (1993) FEBS Lett 332:208–210

    Article  CAS  Google Scholar 

  60. Bolgar MS, Gaskell SJ (1996) Anal Chem 68:2325–2330

    Article  CAS  Google Scholar 

  61. Geiger T, Clarke S (1987) J Biol Chem 262:785–794

    CAS  Google Scholar 

  62. Kinzel V, König N, Pipkorn R, Bossemeyer D, Lehmann WD (2000) Protein Sci 9:2269–2277

    Article  CAS  Google Scholar 

  63. Lehmann WD, Schlosser A, Erben G, Pipkorn R, Bossemeyer D, Kinzel V (2000) Protein Sci 9:2260–2268

    CAS  Google Scholar 

  64. Gonzalez LJ, Shimizu T, Satomi Y, Betancourt L, Besada V, Padron G, Orlando R, Shirasawa T, Shiminoshi J, Takao T (2000) Rapid Commun Mass Spectrom 14:2092–2102

    Article  CAS  Google Scholar 

  65. Xiao G, Bondarenko PV, Jacob J, Chu GC, Chelius D (2007) Anal Chem 79:2714–2721

    Article  CAS  Google Scholar 

  66. Harazono, A, Kawasaki N, Itoh S, Hashii N, Ishii-Watabe A, Kawanishi T, Hayakawa T (2006) Anal Biochem 348:259–268

    Article  CAS  Google Scholar 

  67. Yen TY, Macher BA (2006) Methods Enzymol 415:103–113

    CAS  Google Scholar 

  68. Schnölzer M, Jedrzejewski P, Lehmann WD (1996) Electrophoresis 17:945–953

    Article  Google Scholar 

  69. Stewart II, Thomson T, Figeys D (2001) Rapid Commun Mass Spectrom 15:2456–2465

    Article  CAS  Google Scholar 

  70. Zhang Y, Wolf-Yadin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Mol Cell Proteomics 4:1240–1250

    Article  CAS  Google Scholar 

  71. Schmidt A, Kellermann J, Lottspeich F (2005) Proteomics 5:4–15

    Article  CAS  Google Scholar 

  72. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Nat Biotechnol 17:994–999

    Article  CAS  Google Scholar 

  73. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Mol Cell Proteomics 1:376–386

    Article  CAS  Google Scholar 

  74. Eberle HB, Serrano RL, Radke S, Füllekrug J, Schlosser A, Lehmann WD, Lottspeich F, Kaloyanova D, Wieland FT, Helms JB (2002) J Cell Sci 115:827–838

    CAS  Google Scholar 

  75. Geoghegan KF, Dixon HBF, Rosner PJ, Hoth LR, Lanzetti AJ, Borzilleri KA, Marr ES, Pezzullo LH, Martin LB, LeMotte PK, McColl AS, Kamath AV, Stroh JG (1999) Anal Biochem 267:169–184

    Article  CAS  Google Scholar 

  76. Hsu JL, Huang SY, Shiea JT, Huang WY, Chen SH (2005) J Proteome Res 4:101–108

    Article  CAS  Google Scholar 

  77. Schlosser A, Lehmann WD (2002) Proteomics 2:524–533

    Article  CAS  Google Scholar 

  78. Spengler B (2004) J Am Soc Mass Spectrom 15:703–714

    Article  CAS  Google Scholar 

  79. Zubarev R, Mann M (2007) Mol Cell Proteomics 6:377–381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to D. Kübler, W.E. Hull and R. Pipkorn for valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf D. Lehmann.

Additional information

Chien-Wen Hung and Andreas Schlosser contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Collision-induced Reporter Fragmentations for Identification of Covalently Modified Peptides (PDF 1 457 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, CW., Schlosser, A., Wei, J. et al. Collision-induced reporter fragmentations for identification of covalently modified peptides. Anal Bioanal Chem 389, 1003–1016 (2007). https://doi.org/10.1007/s00216-007-1449-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1449-y

Keywords

Navigation