Skip to main content
Log in

Polycation coating poly(dimethylsiloxane) capillary electrophoresis microchip for rapid separation of ascorbic acid and uric acid

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel method for rapid separation and determination of ascorbic acid and uric acid has been developed with a polycation-modified poly(dimethylsiloxane) (PDMS) microchip under a negative-separation electric field. Just by flushing the microchip with aqueous solutions of the polycations, poly(allylamine) hydrochloride, poly(diallyldimethylammonium chloride) or chitosan could be stably coated on the PDMS microchannel surface, which resulted in a reversed electroosmotic flow and thus the rapid and efficient separation of the two substrates. Factors influencing the separation, including polycation category, buffer solution, detection potential and separation voltage, were investigated and optimized. The cheapness, rapid analysis speed and the successful analysis of human urine make this microsystem attractive for application in clinics.

The electropherograms of 100 μ/mL AA and UA in (1) PAH, (2) PDDA, (3) Chitosan modified PDMS microchannels and native PDMS microchip (4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang L, Lin XQ (2001) Analyst 126:367–370

    Article  CAS  Google Scholar 

  2. Dutt JSN, Cardosci MF, Livingstone C, Davis J (2005) Electroanalysis 17:1233–1243

    Article  CAS  Google Scholar 

  3. Noguchi T, Hoshi TL, Anzai J (2005) Sens Lett 3:164–167

    Article  CAS  Google Scholar 

  4. Ren W, Luo HQ, Li NB (2005) Biosens Bioelectron 21:1086–1092

    Article  Google Scholar 

  5. Roy PR, Okajima T, Ohsaka T (2004) J Electroanal Chem 561:75–82

    Article  CAS  Google Scholar 

  6. Raj CR, Ohsaka T (2001) Chem Lett 7:670–671

    Article  Google Scholar 

  7. Kumar SS, Mathiyarasu J, Phani KL, Jain YK, Yegnaraman V (2005) Electroanalysis 17:2281–2286

    Article  CAS  Google Scholar 

  8. John SA (2005) J Electroanal Chem 579:249–256

    Article  CAS  Google Scholar 

  9. Kalimuthu P, John SA (2005) Electrochem Commun 7:1271–1276

    Article  CAS  Google Scholar 

  10. Li CX, Zeng YL, Liu YJ, Tang CR (2006) Anal Sci 22:393–397

    Article  Google Scholar 

  11. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2003) Electroanalysis 15:1693–1698

    Article  CAS  Google Scholar 

  12. Strochlova EM, Tur’yan YI, Luselman I, Shenhar A (1997) Talanta 44:1923–1928

    Article  Google Scholar 

  13. Lin XQ, Li YX (2006) Electrochim Acta 51:5794–5801

    Article  CAS  Google Scholar 

  14. Fang B, Jiao SF, Li MG, Tao HS (2006) Anal Bioanal Chem 386:2117–2122

    Article  CAS  Google Scholar 

  15. Cheng ML, Liu TZ, Lu FJ, Chiu DTY (1999) Clin Biochem 32:473–476

    Article  CAS  Google Scholar 

  16. Weng OF, Jin WR (2002) J Chromatogr A 971:217–223

    Article  CAS  Google Scholar 

  17. Zinellu A, Sotgia S, Caddeo S, Deiana L, Carru C (2006) J Sep Sci 28:2193–2199

    Article  Google Scholar 

  18. Weng QF, Jin WR (2002) Chin Chem Lett 13:985–987

    CAS  Google Scholar 

  19. Zinellu A, Carru C, Sotgia S, Deiana L (2004) Anal Biochem 330:298–305

    Article  CAS  Google Scholar 

  20. Goral VN, Zaytseva NV, Baeumner AJ (2006) Lab Chip 6:414–421

    Article  CAS  Google Scholar 

  21. Liu AL, He FY, Hu YL, Xia XH (2006) Talanta 68:1303–1308

    Article  CAS  Google Scholar 

  22. Vrouwe EX, Luttge R, Olthuis W, Berg VDA (2006) J Chromatogr A 1102:287–293

    Article  CAS  Google Scholar 

  23. Chen G, Bao HM, Yang PY (2005) Electrophoresis 26:4632–4640

    Article  CAS  Google Scholar 

  24. Vickers JA, Henry CS (2005) Electrophoresis 26:4641–4647

    Article  CAS  Google Scholar 

  25. Li SFY, Kricka LJ (2006) Clin Chem 52:37–45

    Article  CAS  Google Scholar 

  26. Blasco AJ, Barrigas I, Gonzalez MC, Escarpa A (2005) Electrophoresis 26:4664–4673

    Article  CAS  Google Scholar 

  27. Wang J, Chen G, Muck A, Shin D, Fujishima A (2004) J Chromatogr A 1022:207–212

    Article  CAS  Google Scholar 

  28. Wang J, Chatrathi MP (2003) Anal Chem 75:525–529

    Article  CAS  Google Scholar 

  29. Wu DP, Luo Y, Zhou XM, Dai ZP, Lin BC (2005) Electrophoresis 26:211–218

    Article  CAS  Google Scholar 

  30. Xu JJ, Bao N, Xia XH, Peng Y, Chen HY (2004) Anal Chem 76:6902–6907

    Article  CAS  Google Scholar 

  31. Zhitomirsky I (2004) J Appl Electrochem 34:235

    Article  CAS  Google Scholar 

  32. Fang M, Kim CH, Saupe GB, Kim HN, Waraksa CC, Miwa T, Fujishima A, Mallouk TE (1999) Chem Mater 11:1526–1532

    Article  CAS  Google Scholar 

  33. Matsuyama H, Kitamura Y, Naramura Y (1999) J Appl Polym Sci 72:397–404

    Article  CAS  Google Scholar 

  34. Ding WL, Thornton MJ, Fritz JS (1998) Electrophoresis 19:2133–2139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 20475025, 20575029, 20635002), the National Natural Science Funds for Creative Research Groups (20521503) and the key project of the Science and Technology Research of MOE (106080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q.L., Xu, J.J., Lian, H.Z. et al. Polycation coating poly(dimethylsiloxane) capillary electrophoresis microchip for rapid separation of ascorbic acid and uric acid. Anal Bioanal Chem 387, 2699–2704 (2007). https://doi.org/10.1007/s00216-007-1173-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1173-7

Keywords

Navigation