Skip to main content
Log in

G-rich oligonucleotide-functionalized gold nanoparticle aggregation

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Guanine-rich DNA sequences commonly form helical quadruplex structures via Hoogsteen hydrogen bonds. The aggregation behavior of the nanoparticles, which are functionalized with four-guanine-terminated 27-base sequences at a nanoparticle-to-DNA ratio of 1:60, is investigated. To some extent, the guanine-quadruplex structures between the gold nanoparticles (GNPs) promote nanoparticle aggregation. However, the coordination site of the metal ion on the nanoparticle surface is partially passivated: the stability of guanine-rich DNA-GNPs is slightly lower than that of the usual DNA-GNPs, and the metal-ion specificity of nanoparticle assembly is substantially decreased. Thus, a mechanism for the aggregation of guanine-rich sequence-modified GNPs is proposed. It is possible to obtain a stable guanine-rich sequence-functionalized nanoparticle solution at high ionic strength by regulating guanine-rich DNA sequences. The controllability of guanine-rich sequence-modified nanoparticles makes the secondary structure of DNA a potentially useful candidate for DNA analysis and disease diagnostics.

Proposed mechanism for the aggregation of G-rich sequence-functionalized GNP

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2

Similar content being viewed by others

References

  1. Thomas KG, Kamat PV (2000) J Am Chem Soc 122:2655–2656

    Article  CAS  Google Scholar 

  2. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  3. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  4. Weizmann Y, Patolsky F, Popov I, Willner I (2004) Nano Lett 4:787–792

    Article  CAS  Google Scholar 

  5. Taton TA, Mucic RC, Mirkin CA, Letsinger RL (2000) J Am Chem Soc 122:6305–6306

    Article  CAS  Google Scholar 

  6. Le JD, Pinto Y, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA (2004) Nano Lett 4:2343–2347

    Article  CAS  Google Scholar 

  7. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) J Am Chem Soc 126:11768–11769

    Article  CAS  Google Scholar 

  8. Maxwell DJ, Taylor JR, Nie S (2002) J Am Chem Soc 124:9606–9612

    Article  CAS  Google Scholar 

  9. Li Z, Mirkin CA (2005) J Am Chem Soc 127:11568–11569

    Article  CAS  Google Scholar 

  10. Seela F, Jawalekar AM, Chi L, Zhong D (2005) Chem Biodiversity 2:84–91

    Article  CAS  Google Scholar 

  11. Baldrich E, Restrepo A, O’Sullivan CK (2004) Anal Chem 76:7053–7063

    Article  CAS  Google Scholar 

  12. Jing N, Xiong W, Guan Y, Pallansch L, Wang S (2002) Biochemistry 41:5397–5403

    Article  CAS  Google Scholar 

  13. Risitano A, Fox KR (2003) Biochemistry 42:6507–6513

    Article  CAS  Google Scholar 

  14. Jurga-Nowak H, Banachowicz E, Dobek A, Patkowski A (2004) J Phys Chem B108:2744–2750

    Google Scholar 

  15. Storhoff JJ, Elghanian R, Mirkin CA, Letsinger RL (2002) Langmuir 18:6666–6670

    Article  CAS  Google Scholar 

  16. Ueyama H, Takagi M, Takenaka S (2002) J Am Chem Soc 124:14286–14287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No.20435010, 20375012 and 20205005 ) and the Science Commission of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Li Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Analytical & Bioanalytical Chemistry (DOC 943 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, ZS., Guo, MM., Shen, GL. et al. G-rich oligonucleotide-functionalized gold nanoparticle aggregation. Anal Bioanal Chem 387, 2623–2626 (2007). https://doi.org/10.1007/s00216-007-1126-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1126-1

Keywords

Navigation