Skip to main content
Log in

Preparation and characterization by surface-enhanced infrared absorption spectroscopy of silver nanoparticles formed on germanium substrates by electroless displacement

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the feasibility of applying electroless displacement to prepare silver nanoparticles (AgNPs) on the surface of germanium (Ge) substrate is demonstrated, and the performances of surfaces prepared in this manner for surface-enhanced infrared absorption (SEIRA) spectroscopy are reported. The process used to produce suitable AgNPs for SEIRA by electroless deposition is simple and effective, requiring only pretreatment of the germanium surface with hot air, immersion of the substrate in a dilute solution of silver nitrate, and washing of the resulting plate. To quantify the behavior of AgNPs on a Ge substrate and to optimize the conditions for the preparation of AgNPs on Ge substrates, a monolayer of p-nitrothiophenol (PNTP) was bonded to the surface of the AgNPs by immersion of the plate in a dilute solution of PNTP and measurement of the transmission spectrum. The factors that influenced the formation of AgNPs, and hence the SEIRA signals, included the concentration of AgNO3, the reaction time and the temperature. Results indicated that stronger absorption bands in the SEIRA spectrum of a monolayer of PNTP were obtained if the reaction rate for the displacement of silver ions by Ge was slow. This condition was achieved by keeping the concentration of AgNO3 and the reaction temperature low. Under the optimal conditions found in this work, an enhancement factor of approximately 100 was achieved for commonly used probe molecules in SEIRA measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hartstein A, Kirtley JR, Tsang JC (1980) Phys Rev Letter 45:201–204

    Article  CAS  Google Scholar 

  2. Nishikawa Y, Fujiwara K, Shima T (1991) Appl Spectrosc 45:747–751

    Article  CAS  Google Scholar 

  3. Nishikawa Y, Ito Y, Fujiwara K, Shima T (1991) Appl Spectrosc 45:752–755

    Article  CAS  Google Scholar 

  4. Osawa M, Ikeda M (1991) J Phys Chem 95:9914–9919

    Article  CAS  Google Scholar 

  5. Heaps DA, Griffiths PR (2006) Vib Spectrosc 42:45–50

    Article  CAS  Google Scholar 

  6. Merklin GT, Griffiths PR (1997) Langmuir 13:6159–6163

    Article  CAS  Google Scholar 

  7. Badilescu S, Ashrit PV, Truong VV (1988) Appl Phys Lett 52:1551–1553

    Article  CAS  Google Scholar 

  8. Osawa M, Ataka KI, Yoshii K, Nishikawa Y (1993) Appl Spectrosc 47:1497–1502

    Article  CAS  Google Scholar 

  9. Kellner R, Mizaikoff B, Jakusch M, Wanzenbock HD, Weissenbacher N (1997) Appl Spectrosc 51:495–503

    Article  CAS  Google Scholar 

  10. Osawa M, Ataka KI, Ikeda M, Uchihara H, Nanba R (1991) Anal Sci 7:503–506

    CAS  Google Scholar 

  11. Merklin GT, Griffiths PR (1997) J Phys Chem B 101:5810–5813

    Article  CAS  Google Scholar 

  12. Han HS, Han SW, Joo SW, Kim K (1999) Langmuir 15:6868–6874

    Article  CAS  Google Scholar 

  13. Wanzenböck HD, Mizaikoff B, Weissenbacher N, Kellner R (1997) J Mol Struct 410:535–538

    Article  Google Scholar 

  14. Zhang J, Zhao J, He H, Zhang H, Li H, Liu Z (1998) Langmuir 14:5521–5525

    Article  CAS  Google Scholar 

  15. Makino N, Mukai K, Kataoka Y (1997) Appl Spectrosc 51:1460–1463

    Article  CAS  Google Scholar 

  16. Seelenbinder JA, Brown CW, Pivarnik P, Rand AG (1999) Anal Chem 71:1963–1966

    Article  CAS  Google Scholar 

  17. Badilescu S, Ashrit PV, Truong VV, Badilescu II (1989) Appl Spctrosc 43:549–552

    Article  CAS  Google Scholar 

  18. Sato S, Suzuki T (1997) Appl Spectrosc 51:1170–1175

    Article  CAS  Google Scholar 

  19. Brown CW, Li Y, Seelenbinder JA, Pivarnik P, Rand AG, Letcher SV, Gregory OJ, Platek MJ (1998) Anal Chem 70:2991–2996

    Article  CAS  Google Scholar 

  20. Nakao Y, Yamada H (1986) Surf Sci 176:578–592

    Article  CAS  Google Scholar 

  21. Bjerke AE, Griffiths PR, Theiss W (1999) Anal Chem 71:1967–1974

    Article  CAS  Google Scholar 

  22. Ishida KP, Griffiths PR (1994) Anal Chem 66:522–530

    Article  CAS  Google Scholar 

  23. Aroca R, Price B (1979) J Phys Chem B 101:6537–6540

    Article  Google Scholar 

  24. Yang J, Chen SC (2001) Appl Spectrosc 55:399–406

    Article  CAS  Google Scholar 

  25. Porter LA, Choi HC, Ribbe AE, Buriak JM (2002) Nano Lett 2:1067–1071

    Article  CAS  Google Scholar 

  26. Magagnin L, Maboudian R, Carraro C (2002) J Phys Chem B 106:401–407

    Article  CAS  Google Scholar 

  27. Carraro C, Magagnin L, Maboudian R (2002) Electrochim Acta 47:2583–2588

    Article  CAS  Google Scholar 

  28. Djokic SS (1996) J Electrochem Soc 143:1300–1305

    Article  CAS  Google Scholar 

  29. Dmitri AB, Olson TS, Lopez GP, Atanassov P (2004) J Phys Chem B 108:17531–17536

    Article  CAS  Google Scholar 

  30. Watanabe H, Honma H (1997) J Electrochem Soc 144:471–476

    Article  CAS  Google Scholar 

  31. Saito Y, Wang JJ, Smith DA, Batcchelder DN (2002) Langmuir 18:2959–2961

    Article  CAS  Google Scholar 

  32. Rodes A, Orts JM, Perez JM, Feliu JM, Aldaz A (2003) Electrochem Commun 5:56–60

    Article  CAS  Google Scholar 

  33. Delgado JM, Orts JM, Rodes A (2005) Langmuir 21:8809–8816

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors thanks the National Science Council of the Republic of China for supporting this work financially under Contract No. NSC94-2113-M-005-020. The other author (PRG) thanks the Alexander von Humboldt Foundation for a fellowship during which this manuscript was prepared and Honeywell Corporation for partial support of this project. The purchase of the scanning electron microscope used in this project was supported through a grant from the Murdock Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyisy Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Griffiths, P.R. Preparation and characterization by surface-enhanced infrared absorption spectroscopy of silver nanoparticles formed on germanium substrates by electroless displacement. Anal Bioanal Chem 388, 109–119 (2007). https://doi.org/10.1007/s00216-006-1109-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1109-7

Keywords

Navigation