Skip to main content

Advertisement

Log in

Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quorum-sensing in Pseudomonas aeruginosa is known to regulate several aspects of pathogenesis, including virulence factor production, biofilm development, and antimicrobial resistance. Recent high-throughput analysis has revealed the existence of several layers of regulation within the QS-circuit. To address this complexity, mutations in genes encoding known or putative transcriptional regulators that were also identified as being regulated by the las and/or rhl QS systems were screened for their contribution in mediating several phenotypes, for example motility, secreted virulence products, and pathogenic capacity in a lettuce leaf model. These studies have further elucidated the potential contribution to virulence of these genes within the QS regulon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. de Kievit TR, Iglewski BH (2000) Infect Immunol 68:4839–4849

    Article  Google Scholar 

  2. Williams P, Camara M, Hardman A, Swift S, Milton D, Hope VJ, Winzer K, Middleton B, Pritchard DI, Bycroft BW (2000) Phil Trans R Soc London B 355:667–680

    Article  CAS  Google Scholar 

  3. Fuqua W, Winans S, Greenberg E (1994) J Bacteriol 176:269–275

    CAS  Google Scholar 

  4. Whiteley M, Greenberg EP (2001) J Bacteriol 183:5529–5534

    Article  CAS  Google Scholar 

  5. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) J Bacteriol 185:2066–2079

    Article  CAS  Google Scholar 

  6. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Embo J 22:3803–3815

    Article  CAS  Google Scholar 

  7. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) J Bacteriol 185:2080–2095

    Article  CAS  Google Scholar 

  8. Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) J Bacteriol 179:3127–3132

    CAS  Google Scholar 

  9. de Kievit TR, Kakai Y, Register JK, Pesci EC, Iglewski BH (2002) FEMS Microbiol Lett 212:101–106

    Article  Google Scholar 

  10. Lamb JR, Patel H, Montminy T, Wagner VE, Iglewski BH (2003) J Bacteriol 185:7129–7139

    Article  CAS  Google Scholar 

  11. Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP (2001) Proc Natl Acad Sci USA 98:2752–2757

    Article  CAS  Google Scholar 

  12. Ledgham F, Ventre I, Soscia C, Foglino M, Sturgis JN, Lazdunski A (2003) Mol Microbiol 48:199–210

    Article  CAS  Google Scholar 

  13. Lequette Y, Lee JH, Ledgham F, Lazdunski A, Greenberg EP (2006) J Bacteriol 188:3365–3370

    Article  CAS  Google Scholar 

  14. Holloway BW, Krishnapillai V, Morgan AF (1979) Microbiol Rev 43:73–102

    CAS  Google Scholar 

  15. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Chun-Rong L, Guenthner D, Bovee D, Olson MV, Manoil C (2003) Proc Natl Acad Sci USA 100:14339–14344

    Article  CAS  Google Scholar 

  16. Schweizer HP (1992) Mol Microbiol 6:1195–1204

    Article  CAS  Google Scholar 

  17. Seed P, Passador L, Iglewski BH (1995) J Bacteriol 177:654–659

    CAS  Google Scholar 

  18. Ohman DE, Cryz SJ, Iglewski BH (1980) J Bacteriol 142:836–842

    CAS  Google Scholar 

  19. de Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH (2001) Appl Environ Microbiol 67:1865–1873

    Article  Google Scholar 

  20. Spoering AL, Lewis K (2001) J Bacteriol 183:6746–6751

    Article  CAS  Google Scholar 

  21. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  22. Deziel E, Comeau Y, Villemur R (2001) J Bacteriol 183:1195–1204

    Article  CAS  Google Scholar 

  23. Glessner A, Smith R, Iglewski BH, Robinson J (1999) J Bacteriol 181:1623–1629

    CAS  Google Scholar 

  24. Juhas M, Wiehlmann L, Huber B, Jordan D, Lauber J, Salunkhe P, Limpert AS, von Gotz F, Steinmetz I, Eberl L, Tummler B (2004) Microbiology 150:831–841

    Article  CAS  Google Scholar 

  25. Ochsner U, Reiser J (1995) Proc Natl Acad Sci USA 92:6424–6428

    Article  CAS  Google Scholar 

  26. Van Delden C, Pesci E, Pearson J, Iglewski BH (1998) Infect Immunol 66:4499–4502

    Google Scholar 

  27. Filiatrault MJ, Picardo KF, Ngai H, Passador L, Iglewski BH (2006) Infect Immunol 74:4237–4245

    Article  CAS  Google Scholar 

  28. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Proc Natl Acad Sci USA 96:11229–11234

    Article  CAS  Google Scholar 

  29. Albus A, Pesci E, Runyen-Janecky L, West S, Iglewski BH (1997) J Bacteriol 179:3928–3935

    CAS  Google Scholar 

  30. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) Science 280:295–298

    Article  CAS  Google Scholar 

  31. Jander G, Rahme LG, Ausubel FM (2000) J Bacteriol 182:3843–3845

    Article  CAS  Google Scholar 

  32. McPhee JB, Lewenza S, Hancock RE (2003) Mol Microbiol 50:205–217

    Article  CAS  Google Scholar 

  33. Dong YH, Zhang XF, Xu JL, Tan AT, Zhang LH (2005) Mol Microbiol 58:552–564

    Article  CAS  Google Scholar 

  34. Schweizer HP (1991) J Bacteriol 173:6798–6806

    CAS  Google Scholar 

  35. Gliese N, Khodaverdi V, Schobert M, Gorisch H (2004) Microbiology 150:1851–1857

    Article  CAS  Google Scholar 

  36. Deziel E, Lepine F, Milot S, Villemur R (2003) Microbiology 149:2005–2013

    Article  CAS  Google Scholar 

  37. Lequette Y, Greenberg EP (2005) J Bacteriol 187:37–44

    Article  CAS  Google Scholar 

  38. Boles BR, Thoendel M, Singh PK (2005) Mol Microbiol 57:1210–1223

    Article  CAS  Google Scholar 

  39. Palma M, Zurita J, Ferreras, JA, Worgall S, Larone DH, Shi L, Campagne F, Quadri LE (2005) Infect Immunol 73:2958–2966

    Article  CAS  Google Scholar 

  40. Pearson J, Pesci E, Iglewski BH (1997) J Bacteriol 179:5756–5767

    CAS  Google Scholar 

  41. Brint J, Ohman D (1995) J Bacteriol 177:7155–7163

    CAS  Google Scholar 

  42. Gambello MJ, Iglewski BH (1991) J Bacteriol 173:3000–3009

    CAS  Google Scholar 

  43. Schweizer HD (1993) Biotechniques 15:831–834

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Kristin Picardo for assistance with the lettuce leaf model of infection and Jane Malone for technical assistance with autoinducer extractions. This work was supported by a grant from the National Institutes of Health to B.H.I (NIHR37AI37713). V.E.W. is supported by an NIH training grant (5T32AI07285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara H. Iglewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, V.E., Li, LL., Isabella, V.M. et al. Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa . Anal Bioanal Chem 387, 469–479 (2007). https://doi.org/10.1007/s00216-006-0964-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0964-6

Keywords

Navigation