Skip to main content
Log in

A study on photolinkers used for biomolecule attachment to polymer surfaces

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of photolinkers (photoactivatable heterobifunctional crosslinkers) is a popular method to attach biomolecules to polymer surfaces. This study addresses the selection of photolinker and the adjustment of reaction conditions, such as the concentration of biomolecule applied, and irradiation time. The influence of these variables are investigated for four prominent photolinkers: ketyl-reactive benzophenone (BP) and anthraquinone (AQ), nitrene-reactive nitrophenyl azide (NPA), and carbene-reactive phenyl-(trifluoromethyl)diazirine (PTD). The influence of substrate material is discussed, and three different polymers served as representative substrates: poly(methyl methacrylate) (PMMA), polystyrene (PS), and a cycloolefin copolymer (COC). We compared the overall photolinking efficiency of all photolinkers with respect to the polymer substrate they are applied to, and we found considerable differences for certain photolinker/substrate combinations. Of all photolinkers and substrates tested, PTD as photolinker and COC as substrate showed the highest photolinking efficiencies and fastest reaction times. For this study DNA oligonucleotides were chosen as a model system of biomolecular probes, and fluorescence detection of DNA microarrays served as method of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AQ:

anthraquinone

BP:

benzophenone

BSA:

bovine serum albumin

COC:

cycloolefin copolymer

E PL :

photolinking efficiency

NPA:

p-nitrophenyl azide

PBS:

phosphate-buffered saline

PL:

photolinker

PMMA:

poly(methyl methacrylate)

PS:

polystyrene

PTD:

3-phenyl-3-(trifluoromethyl)diazirine

References

  1. Wessa T, Rapp M, Sigrist H (1999) Colloids Surf B Biointerfaces 15:139–146

    Article  CAS  Google Scholar 

  2. Ratner BD (1995) Biosens Bioelectron 10:797–804

    Article  CAS  Google Scholar 

  3. Burke CS, Polerecky L, MacCraith BD (2004) Meas Sci Technol 15:1140–1145

    Article  CAS  Google Scholar 

  4. Haynes CA, Norde W (1995) J Colloid Interface Sci 169:313–328

    Article  CAS  Google Scholar 

  5. Buijs J, Norde W, Lichtenbelt JWT (1996) Langmuir 12:1605–1613

    Article  CAS  Google Scholar 

  6. Chevrier D, Rasmussen SR, Guesdon J (1993) Mol Cell Probes 7:187–197

    Article  CAS  Google Scholar 

  7. Sigrist H, Collioud A, Clemence J-F, Gao H, Luginbuehl R, Saenger M, Sundarababu G (1995) Opt Eng (Bellingham, Washington) 34:2339–2348

    Article  CAS  Google Scholar 

  8. Holden MA, Jung S-Y, Cremer PS (2004) Anal Chem 76:1838–1843

    Article  CAS  Google Scholar 

  9. Reichmuth P, Sigrist H, Badertscher M, Morf WE, de Rooij NF, Pretsch E (2002) Bioconjug Chem 13:90–96

    Article  CAS  Google Scholar 

  10. Sabanayagam CR, Smith CL, Cantor CR (2000) Nucleic Acids Res 28:e33, ii–iv

    Article  CAS  Google Scholar 

  11. Hermanson GT (ed) (1995) Bioconjugate Techniques. 1995

  12. Brunner J (1993) Ann Rev Biochem 62:483–514

    Article  CAS  Google Scholar 

  13. Dorman G, Prestwich GD (1994) Biochemistry 33:5661–5673

    Article  CAS  Google Scholar 

  14. Yoshida E, Nakayama H, Hatanaka Y, Kanaoka Y (1990) Chem Pharm Bull 38:982–987

    CAS  Google Scholar 

  15. Groehn V, Frohlich L, Schmidt HHHW, Pfleiderer W (2000) Helv Chim Acta 83:2738–2750

    Article  CAS  Google Scholar 

  16. Zotzmann J, Hennig L, Welzel P, Muller D, Schafer C, Zillikens S, Pusch H, Glitsch HG, Regenthal R (2000) Tetrahedron 56:9625–9632

    Article  CAS  Google Scholar 

  17. Tyagi NK, Kinne RKH (2003) Anal Biochem 323:74–83

    Article  CAS  Google Scholar 

  18. Clemence J-F, Ranieri JP, Aebischer P, Sigrist H (1995) Bioconjug Chem 6:411–417

    Article  CAS  Google Scholar 

  19. Ma H, Davis RH, Bowman CN (2000) Macromolecules 33:331–335

    Article  CAS  Google Scholar 

  20. Pouliquen L, Coqueret X (1996) Macromol Chem Phys 197:4045–4060

    Article  CAS  Google Scholar 

  21. Schulz M, Matuschewski H, Wenschuh H, Thiele TA, Ulbricht M, Schedler U (2000) CLB Chem Lab Biotech 51:84–86

    CAS  Google Scholar 

  22. Kumar P, Agarwal SK, Gupta KC (2004) Bioconjug Chem 15:7–11

    Article  CAS  Google Scholar 

  23. Koch T, Jacobsen N, Fensholdt J, Boas U, Fenger M, Jakobsen MH (2000) Bioconjug Chem 11:474–483

    Article  CAS  Google Scholar 

  24. Liu X-h, Wang H-k, Herron JN, Prestwich GD (2000) Bioconjug Chem 11:755–761

    Article  CAS  Google Scholar 

  25. Czarnecki J, Geahlen R, Haley B (1979) Methods Enzymol 56:642–653

    CAS  Google Scholar 

  26. Brunner J, Senn H, Richards FM (1980) J Biol Chem 255:3313–3318

    CAS  Google Scholar 

  27. Olszewski JD, Dorman G, Elliott JT, Hong Y, Ahern DG, Prestwich GD (1995) Bioconjug Chem 6:395–400

    Article  CAS  Google Scholar 

  28. Chiara DC, Trinidad JC, Wang D, Ziebell MR, Sullivan D, Cohen JB (2003) Biochemistry 42:271–283

    Article  CAS  Google Scholar 

  29. Ambroise Y, Pillon F, Mioskowski C, Valleix A, Rousseau B (2001) Eur J Org Chem 3961–3964

  30. Ingenhorst G, Bindseil KU, Boddien C, Drose S, Gassel M, Altendorf K, Zeeck A (2001) Eur J Org Chem 4525–4532

  31. Hori N, Iwai S, Inoue H, Ohtsuka E (1992) J Biol Chem 267:15591–15594

    CAS  Google Scholar 

  32. Wiedmann M, Kurzchalia TV, Bielka H, Rapoport TA (1987) J Cell Biol 104:201–208

    Article  CAS  Google Scholar 

  33. Buchmueller KL, Hill BT, Platz MS, Weeks KM (2003) J Am Chem Soc 125:10850–10861

    Article  CAS  Google Scholar 

  34. Weber T, Brunner J (1995) J Am Chem Soc 117:3084–3095

    Article  CAS  Google Scholar 

  35. Nahar P, Naqvi A, Basir SF (2004) Anal Biochem 327:162–164

    Article  CAS  Google Scholar 

  36. Guire P (1976) Methods Enzymol 44:280–288

    Article  CAS  Google Scholar 

  37. Collioud A, Clemence JF, Saenger M, Sigrist H (1993) Bioconjug Chem 4:528–536

    Article  CAS  Google Scholar 

  38. Gao H, Kislig E, Oranth N, Sigrist H (1994) Biotechnol Appl Biochem 20:251–263

    CAS  Google Scholar 

  39. Nassal M (1983) Liebigs Ann Chem 1510–1523

Download references

Acknowledgments

The presented work was part of the German national project “nanoMAP: modular application platform with integrated nanoliter dosage for highly parallel sample analysis” supported by the Federal Ministry of Education and Research (project no. 0312001B). The authors are grateful to the project partners microParts (Dortmund, Germany) for providing samples of polymer slides, and IMTEK (Freiburg, Germany) for their support regarding TopSpot technology. Daniela M. Dankbar was financially supported by the DFG Graduiertenkolleg “Analytische Chemie”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Gauglitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dankbar, D.M., Gauglitz, G. A study on photolinkers used for biomolecule attachment to polymer surfaces. Anal Bioanal Chem 386, 1967–1974 (2006). https://doi.org/10.1007/s00216-006-0871-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0871-x

Keywords

Navigation