Skip to main content
Log in

Fluorescence characterization of metal ion–humic acid interactions in soils amended with composted municipal solid wastes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fluorescence spectroscopy has been used to probe the structural properties and Cu(II), Zn(II), Cd(II), and Pb(II)-binding behavior of humic acid (HA)-like fractions isolated from a municipal solid waste compost (MSWC) and HAs from unamended and MSWC-amended soils. The main feature of the fluorescence spectra, in the form of emission-excitation matrix (EEM) plots, was a broad peak with the maximum centered at an excitation/emission wavelength pair that was much shorter (340/437 nm) for MSWC-HA than for unamended and MSWC-amended soil HAs (455/513 and 455/512 nm, respectively). Fluorescence intensity for MSWC-amended soil HA was less than that for unamended soil HA. These results were indicative of more aromatic ring polycondensation and humification of soil HAs, and of partial incorporation of simple and low-humified components of MSWC-HA into native soil HA, as a result of MSWC amendment. Titrations of HAs with Cu(II), Zn(II), Cd(II), and Pb(II) ions at pH 6 and ionic strength 0.1 mol L−1 resulted in a marked decrease of the fluorescence intensities of untreated HAs. By successfully fitting a single-site fluorescence-quenching model to titration data, the metal ion complexing capacities of each HA and the stability constants of metal ion-HA complexes were obtained. The binding capacities and stability constants of MSWC-HA were smaller than those of the unamended soil HA. Application of MSWC to soil slightly reduced the metal-ion-binding capacities and affinities of soil HAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McKinney J, Rogers R (1992) Environ Sci Technol 26:1298–1299

    Article  Google Scholar 

  2. Wong SC, Li XD, Zhang G, Qi SH, Min YS (2002) Environ Pollut 119:33–44

    Article  CAS  Google Scholar 

  3. Liu HY, Probst A, Liao BH (2005) Environ Sci Technol 339:153–166

    CAS  Google Scholar 

  4. Parat C, Chaussod R, Lévêque J, Andreux F (2005) Soil Biol Biochem 37:673–679

    Article  CAS  Google Scholar 

  5. Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister U (2000) Remediation engineering of contaminated soils. Marcel Dekker, New York

    Google Scholar 

  6. Ochoa-Loza FJ, Artiola JF, Maier RM (2001) J Environ Qual 30:479–485

    CAS  Google Scholar 

  7. Sposito G (1994) Chemical equilibria and kinetics in soils. Oxford University Press, New York

    Google Scholar 

  8. Sparks DL (2002) Environmental Soil Chemistry, 2nd edn. Academic Press, San Diego

    Google Scholar 

  9. Sauve S, Hendershot W, Allen HE (2000) Environ Sci Technol 34:1125–1131

    Article  CAS  Google Scholar 

  10. Tipping E (2002) Cation binding by humic substances. Cambridge University Press, New York

    Google Scholar 

  11. Senesi N, Loffredo E (2005) In: Sparks DL, Tabatabai MA (eds) Chemical processes in soil. SSSA, Madison, WI

    Google Scholar 

  12. Senesi N, Plaza C, Brunetti G, Polo A (2006) Soil Biol Biochem, (in press)

  13. De Bertoldi M, Sequi P, Lemmes B, Papi T (1996) The science of composting. Chapman and Hall, London

    Google Scholar 

  14. Kiikkilä O, Perkiömäki J, Barnette M, Derome J, Pennanen T, Tulisalo E, Fritze H (2001) J Environ Qual 30:1134–1143

    Google Scholar 

  15. Bolan NS, Adriano DC, Natesan R, Koo BJ (2003) J Environ Qual 32:120–128

    Article  CAS  Google Scholar 

  16. Veeken A, Hamelers B (2002) Sci Total Environ 300:87–98

    Article  CAS  Google Scholar 

  17. Senesi N, Miano TM, Provenzano MR, Brunetti G (1991) Soil Sci 152:259–271

    Article  CAS  Google Scholar 

  18. Mobed JJ, Hemmingsen SL, Autry JL, McGown LB (1996) Environ Sci Technol 30:3061–3065

    Article  CAS  Google Scholar 

  19. Chen J, LeBoeuf EJ, Dai S, Gu B (2003) Chemosphere 50:639–647

    Article  CAS  Google Scholar 

  20. Bertoncini EI, D’Orazio V, Senesi N, Mattiazzo ME (2005) Anal Bioanal Chem 381:1281–1288

    Article  CAS  Google Scholar 

  21. Ryan DK, Weber JH (1982) Anal Chem 54:986–990

    CAS  Google Scholar 

  22. Cabaniss SE (1992) Environ Sci Technol 26:1133–1139

    Article  CAS  Google Scholar 

  23. Luster J, Lloyd T, Sposito G (1996) Environ Sci Technol 30:1565–1574

    Article  CAS  Google Scholar 

  24. Gao K, Pearce J, Jones J, Taylor C, Taylor C (1999) Environ Geochem Health 21:13–26

    Article  CAS  Google Scholar 

  25. Evangelou VP, Marsi M (2001) Plant Soil 229:13–24

    Article  CAS  Google Scholar 

  26. Elkins KM, Nelson DJ (2001) J Inorg Biochem 87:81–96

    Article  CAS  Google Scholar 

  27. Elkins KM, Nelson DJ (2002) Coord Chem Rev 228:205–225

    Article  CAS  Google Scholar 

  28. Ghatak H, Mukhopadhyay SK, Jana TK, Sen BK, Sen S (2004) Wetlands Ecol Manage 12:145–155

    Article  CAS  Google Scholar 

  29. Provenzano MR, D’Orazio V, Jerzykiewicz M, Senesi N (2004) Chemosphere 55:885–892

    Article  CAS  Google Scholar 

  30. Plaza C, D’Orazio V, Senesi N (2005) Geoderma 125:177–186

    Article  CAS  Google Scholar 

  31. Plaza C, Brunetti G, Senesi N, Polo A (2006) Environ Sci Technol 40:917–923

    Article  CAS  Google Scholar 

  32. Hernández D, Plaza C, Senesi N, Polo A (2006) Environ Pollut DOI 101016/jenvpol200511038

  33. Miikki V, Senesi N, Hänninen K (1997) Chemosphere 34:1639–1651

    Article  CAS  Google Scholar 

  34. Rivero C, Chirenje T, Ma LQ, Martinez G (2004) Geoderma 123:355–361

    Article  CAS  Google Scholar 

  35. Provenzano MR, De Oliveira SC, Santiago Silva MR, Senesi N (2001) J Agric Food Chem 49:5874–5879

    Article  CAS  Google Scholar 

  36. Provenzano MR, Albuzio A, D’Orazio V (2005) J Agric Food Chem 53:374–382

    Article  CAS  Google Scholar 

  37. Brunetti G, Plaza C, Clapp CE, Senesi N (2006) Soil Biol Biochem, (in press)

  38. Schnitzer M (1982) In Page BL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbiological properties, 2nd edn. Agronomy Monograph No 9, SSSA, Madison, WI

    Google Scholar 

  39. Plaza C, Brunetti G, Senesi N, Polo A (2005) Environ Sci Technol 39:6692–6697

    Article  CAS  Google Scholar 

  40. Cory RM, McKnight DM (2005) Environ Sci Technol 39:8142–8149

    Article  CAS  Google Scholar 

  41. Wu FC, Mills RB, Evans RD, Dillon PJ (2004) Anal Chem 76:10–113

    Google Scholar 

  42. Irving HMNH, Williams RJP (1948) Nature 162:746–747

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor C.E. Clapp, Department of Soil, Water and Climate, University of Minnesota, St Paul, MN, USA, for providing the MSWC and soil samples used in this work. C. Plaza is a recipient of a Ramón y Cajal contract funded by the Spanish Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Plaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaza, C., Brunetti, G., Senesi, N. et al. Fluorescence characterization of metal ion–humic acid interactions in soils amended with composted municipal solid wastes. Anal Bioanal Chem 386, 2133–2140 (2006). https://doi.org/10.1007/s00216-006-0844-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0844-0

Keywords

Navigation