Skip to main content
Log in

Bacterial quorum sensing and interference by naturally occurring biomimics

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bacteria are able to coordinate gene expression as a community through the secretion and detection of signalling molecules so that the members of the community can simultaneously express specific behaviours. This mechanism of regulation of behaviour appears to be a key trait for adaptation to specific environments and has been shown to regulate a variety of important phenotypes, from virulence factor production to biofilm formation to symbiosis related behaviours such as bioluminescence. The ability to communicate and communally regulate gene expression is hypothesised to have evolved as a way for organisms to delay expression of phenotypes until numerical supremacy is reached. For example, in the case of infection, if an invading microorganism were to express virulence factors too early, the host may be able to mount a successful defence and repel the invaders. There is growing evidence that bacterial quorum sensing (QS) systems are involved in cross-kingdom signalling with eukaryotic organisms and that eukaryotes are capable of actively responding to bacteria in their environment by detecting and acting upon the presence of these signalling molecules. Likewise, eukaryotes produce compounds that can interfere with QS systems in bacteria by acting as agonists or antagonists. An exciting new field of study, biomimetics, takes inspiration from nature’s models and attempts to design solutions to human problems, and biomimics of QS systems may be one such solution. This article presents the acylated homoserine lactone and autoinducer 2 QS systems in bacteria, the means of intercepting or interfering with bacterial QS systems evolved by eukaryotes, and the rational design of synthetic antagonists.

Natural products, furanones, from the red alga Delisea pulchra inhibit the quorum sensing regulated production of violacein by Chromobacterium violaceum

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beck von Bodman S, Majerczak DR, Coplin DL (1998) Proc Natl Acad Sci USA 95:7687–7692

    Article  Google Scholar 

  2. Eberhard A, Burlingame AL, Eberhard A, Kenyon GL, Nealson KH, Openheimer JJ (1981) Biochem 20:2444–2449

    Article  CAS  Google Scholar 

  3. Nealson KH, Markovitz A (1970) J Bacteriol 104:300–312

    CAS  Google Scholar 

  4. Fuqua WC, Winans SC, Greenberg PE (1994) J Bacteriol 176:269–275

    CAS  Google Scholar 

  5. Whiteley M, Lee KM, Greenberg EP (1999) Proc Natl Acad Sci USA 96:13904–13909

    Article  CAS  Google Scholar 

  6. Rumbaugh KP, Griswold JA, Hamood AN (2000) Microbes Infect 2:1721–1731

    Article  CAS  Google Scholar 

  7. Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP (2001) Proc Natl Acad Sci USA 98:2752–2757

    Article  CAS  Google Scholar 

  8. Lequette Y, Lee J-H, Ledgham F, Lazdunski A, Greenberg EP (2006) J Bacteriol 188:3365–3370

    Article  CAS  Google Scholar 

  9. Ledgham F, Ventre I, Soscia C, Foglino M, Sturgis JN, Lazdunski A (2003) Mol Microbiol 48:199–210

    Article  CAS  Google Scholar 

  10. Lee J-H, Lequette Y, Greenberg EP (2006) Mol Microbiol 59:602–609

    Article  CAS  Google Scholar 

  11. Minogue TD, Wehland-von Trebra M, Bernhard F, von Bodman SB (2002) Mol Microbiol 44:1625–1635

    Article  CAS  Google Scholar 

  12. Zhu J, Winans SC (2001) Proc Natl Acad Sci USA 98:1507–1512

    Article  CAS  Google Scholar 

  13. Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, De Francesco R, Neddermann P, Di Marco S (2002) EMBO J 21:4393–4401

    Article  CAS  Google Scholar 

  14. Medina G, Juarez K, Valderrama B, Soberon-Chavez G (2003) J Bacteriol 185:5976–5983

    Article  CAS  Google Scholar 

  15. Van Houdt R, Aertsen A, Moons P, Vanoirbeek K, Michiels CW (2006) FEMS Microbiol Lett 256:83–89

    Article  CAS  Google Scholar 

  16. Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Hoiby N, Givskov M, Molin S, Eberl L (2001) Microbiology 147:3249–3262

    CAS  Google Scholar 

  17. Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Mol Microbiol 9:773–786

    Article  CAS  Google Scholar 

  18. Bassler BL, Wright M, Silverman MR (1994) Mol Microbiol 13:273–286

    Article  CAS  Google Scholar 

  19. Surette MG, Miller MB, Bassler BL (1999) Proc Natl Acad Sci USA 96:1639–1644

    Article  CAS  Google Scholar 

  20. Lombardia E, Rovetto AJ, Arabolaza AL, Grau RR (2006) J Bacteriol 188:4442–4452

    Article  CAS  Google Scholar 

  21. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Nature 415:545–549

    Article  CAS  Google Scholar 

  22. Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM (2004) Mol Cell 15:677–687

    Article  CAS  Google Scholar 

  23. Taga ME, Miller ST, Bassler BL (2003) Mol Microbiol 50:1411–1427

    Article  CAS  Google Scholar 

  24. Taga ME, Semmelhack JL, Bassler BL (2001) Mol Microbiol 42:777–793

    Article  CAS  Google Scholar 

  25. Xavier KB, Bassler BL (2005) J Bacteriol 187:238–248

    Article  CAS  Google Scholar 

  26. Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MTG, Linforth R, Cornell KA, Taylor AJ, Hill PJ, Williams P (2002) Microbiology 148:909–922

    CAS  Google Scholar 

  27. Doherty N, Holden MTG, Qazi SN, Williams P, Winzer K (2006) J Bacteriol 188:2885–2897

    Article  CAS  Google Scholar 

  28. Dong Y-H, Wang L-H, Xu J-L, Zhang H-B, Zhang X-F, Zhang L-H (2001) Nature 411:813-817

    Article  CAS  Google Scholar 

  29. Lee SJ, Park S-Y, Lee J-J, Yum D-Y, Koo B-T, Lee J-K (2002) Appl Environ Microbiol 68:3919–3924

    Article  CAS  Google Scholar 

  30. Reimmann C, Ginet N, Michel L, Keel C, Michaux P, Krishnapillai V, Zala M, Heurlier K, Triandafillu K, Harms H, Defago G, Haas D (2002) Microbiology 148:923–932

    CAS  Google Scholar 

  31. Leadbetter JR, Greenberg EP (2000) J Bacteriol 182:6921–6926

    Article  CAS  Google Scholar 

  32. Uroz S, D’Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Microbiology 149:1981–1989

    Article  CAS  Google Scholar 

  33. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) Appl Environ Microbiol 69:4989–4993

    Article  CAS  Google Scholar 

  34. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Appl Environ Microbiol 69:5941–5949

    Article  CAS  Google Scholar 

  35. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK (2003) Microbiology 149:1541–1550

    Article  CAS  Google Scholar 

  36. Lin Y-H, Xu J-L, Hu J, Wang L-H, Ong SL, Leadbetter JR, Zhang L-H (2003) Mol Microbiol 47:849–860

    Article  Google Scholar 

  37. Park S-Y, Kang H-O, Jang H-S, Lee J-K, Koo B-T, Yum D-Y (2005) Appl Environ Microbiol 71:2632–2641

    Article  CAS  Google Scholar 

  38. Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Camara M, Williams P, Quax WJ (2006) Infect Immun 74:1673–1682

    Article  CAS  Google Scholar 

  39. Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG (2000) J Bacteriol 182:4578–4586

    Article  CAS  Google Scholar 

  40. Lupp C, Ruby EG (2005) J Bacteriol 187:3620–3629

    Article  CAS  Google Scholar 

  41. Schaefer AL, Wier AM, Graber JR, DeLoney-Marino CR, McFall-Ngai MJ, Ruby EG (2005) Coming out of the dark: using genomics to shed light on the squid-Vibrio symbiosis. Presented at VIBRIO 2005, 7–8 November 2005, Ghent, Belgium

  42. Nishiguchi MK, Ruby EG, McFall-Ngai MJ (1998) Appl Environ Microbiol 64:3209–3213

    CAS  Google Scholar 

  43. Visick KL, Fuqua C (2005) J Bacteriol 187:5507–5519

    Article  CAS  Google Scholar 

  44. Tait K, Joint I, Daykin M, Milton DL, Williams P, Camara M (2005) Environ Microbiol 7:229–240

    Article  CAS  Google Scholar 

  45. Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, Camara M (2002) Science 298:1207

    Article  Google Scholar 

  46. Nachin L, Barras F (2000) Mol Plant Microbe Interact 13:882–886

    Google Scholar 

  47. Beale E, Li G, Tan M-W, Rumbaugh KP (2006) Appl Environ Microbiol 72:5135–5137

    Article  CAS  Google Scholar 

  48. Reading NC, Sperandio V (2006) FEMS Microbiol Lett 254:1–11

    Article  CAS  Google Scholar 

  49. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Proc Natl Acad Sci USA 100:8951–8956

    Article  CAS  Google Scholar 

  50. DiMango E, Zar HJ, Bryan R, Prince A (1995) J Clin Invest 96:2204–2210

    Article  CAS  Google Scholar 

  51. Li L, Hooi D, Chhabra SR, Pritchard D, Shaw PE (2004) Oncogene 23:4894–4902

    Article  CAS  Google Scholar 

  52. Ritchie AJ, Yam AOW, Tanabe KM, Rice SA, Cooley MA (2003) Infect Immun 71:4421–4431

    Article  CAS  Google Scholar 

  53. Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, Standiford TJ, Ishiguro M, Yamaguchi K (2003) Infect Immun 71:5785–5793

    Article  CAS  Google Scholar 

  54. Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H, Stewart GSAB, Bycroft BW, Pritchard DI (1998) Infect Immun 66:36–42

    CAS  Google Scholar 

  55. Smith RS, Harris SG, Phipps R, Iglewski B (2002) J Bacteriol 184:1132–1139

    Article  CAS  Google Scholar 

  56. Smith RS, Kelly R, Iglewski B, Phipps R (2002) J Immunol 169:2636–2642

    CAS  Google Scholar 

  57. Hooi DSW, Bycroft BW, Chhabra SR, Williams P, Pritchard DI (2004) Infect Immun 72:6463–6470

    Article  CAS  Google Scholar 

  58. Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JAJ, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Hoiby N, Givskov M (2005) Microbiology 151:373–383

    Article  CAS  Google Scholar 

  59. Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP (2004) Proc Natl Acad Sci USA 101:3587–3590

    Article  CAS  Google Scholar 

  60. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Proc Natl Acad Sci USA 100:1444–1449

    Article  CAS  Google Scholar 

  61. Teplitski M, Robinson JB, Bauer WD (2000) Mol Plant Microbe Interact 13:637–648

    Google Scholar 

  62. Givskov M, De Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) J Bacteriol 178:6618–6622

    CAS  Google Scholar 

  63. Kjelleberg S, Steinberg P, Givskov M, Gram L, Manefield M, de Nys R (1997) Aquat Microb Ecol 13:85–93

    Google Scholar 

  64. Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Microbiology 148:1119–1127

    CAS  Google Scholar 

  65. Manefield M, Harris L, Rice SA, De Nys R, Kjelleberg S (2000) Appl Environ Microbiol 66:2079–2084

    Article  CAS  Google Scholar 

  66. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song ZJ, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) EMBO J 22:3803–3815

    Article  CAS  Google Scholar 

  67. Wu H, Song Z, Givskov M, Doring G, Worlitzsch D, Mathee K, Rygaard J, Høiby N (2001) Microbiology 147:1105–1113

    CAS  Google Scholar 

  68. Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N (2004) J Antimicrob Chemother 53:1054–1061

    Article  CAS  Google Scholar 

  69. Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK (2004) Biotech Bioeng 88:630–642

    Article  CAS  Google Scholar 

  70. Ren DC, Sims JJ, Wood TK (2001) Environ Microbiol 3:731–736

    Article  CAS  Google Scholar 

  71. Teplitski M, Chen HC, Rajamani S, Gao MS, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Plant Physiol 134:137–146

    Article  CAS  Google Scholar 

  72. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, Nielsen J, Eberl L, Givskov M (2005) J Bacteriol 187:1799–1814

    Article  CAS  Google Scholar 

  73. Shiner EK, Rumbaugh KP, Williams SC (2005) FEMS Microbiol Rev 29:935–947

    Article  CAS  Google Scholar 

  74. Eberhard A, Widrig CA, McBath P, Schineller JB (1986) Arch Microbiol 146:35–40

    Article  CAS  Google Scholar 

  75. Passador L, Tucker KD, Guertin KR, Journet MP, Kende AS, Iglewski BH (1996) J Bacteriol 178:5995–6000

    CAS  Google Scholar 

  76. Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP (1996) J Bacteriol 178:2897–2901

    CAS  Google Scholar 

  77. Zhu J, Beaber JW, Moré MI, Fuqua C, Eberhard A, Winans SC (1998) J Bacteriol 180:5398–5405

    CAS  Google Scholar 

  78. Reverchon S, Chantegrel B, Deshayes C, Doutheau A, Cotte-Pattat N (2002) Bioorg Med Chem Lett 12:1153–1157

    Article  CAS  Google Scholar 

  79. Goh W, Rice SA, Kumar N (2005) Molecules 10:1263–1271

    Article  CAS  Google Scholar 

  80. Mae A, Montesano M, Koiv V, Palva ET (2001) Mol Plant Microbe Interact 14:1035–1042

    Google Scholar 

  81. Camilli A, Bassler BL (2006) Science 311:1113–1116

    Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory is supported by National Health and Medical Research Council and the Centre for Marine Biofouling and Bio-Innovation at the University of New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staffan Kjelleberg.

Additional information

“The proof of evolution lies in those adaptations that arise from improbable foundations”—Stephen Jay Gould

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDougald, D., Rice, S.A. & Kjelleberg, S. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal Bioanal Chem 387, 445–453 (2007). https://doi.org/10.1007/s00216-006-0761-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0761-2

Keywords

Navigation