Skip to main content
Log in

Development of RNR3- and RAD54-GUS reporters for testing genotoxicity in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

S. cerevisiae RNR3 and RAD54 gene transcription becomes strongly activated upon DNA damage. This property was used to construct yeast strains in which DNA damage can be monitored by a very sensitive fluorogenic assay in a convenient 96-well microtiter plate format. These strains carried stably integrated fusions of RNR3 or RAD54 promoters to the E. coli β-glucuronidase GUS gene. GUS activity was measured by fluorogenic detection, a method that greatly increases the precision and sensitivity of the assay. Detection levels were similar to those of real-time quantitative PCR methods and close to the limits of biological response. The two reporters differed in terms of fold-induction, activation kinetics, sensitivity and specificity upon exposure to a variety of genotoxic compounds. While RNR3-GUS showed the fastest response, RAD54-GUS showed the highest sensitivity: similar to previous reported sensitivities for bacterial and eukaryotic genotoxic detection systems. These reporter strains may complement current genotoxicity tests, but they also have the advantages of higher flexibility, requirement for shorter incubation times, and the capability of being fully automated. In addition, the intrinsic features of the system facilitate its easy improvement by genetic manipulating the yeast strain or by introducing mammalian metabolizing enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ames BN, Lee FD, Durston WE (1973) Proc Natl Acad Sci USA 70:782–786

    Article  CAS  Google Scholar 

  2. Maron DM, Ames BN (1983) Mutat Res 113:173–215

    CAS  Google Scholar 

  3. Yasunaga K, Kiyonari A, Oikawa T, Abe N, Yoshikawa K (2004) Environ Mol Mutagen 44:329–345

    Article  CAS  Google Scholar 

  4. Quillardet P, Huisman O, D’Ari R, Hofnung M (1982) Proc Natl Acad Sci USA 79:5971–5975

    Article  CAS  Google Scholar 

  5. Jelinsky SA, Estep P, Church GM, Samson LD (2000) Mol Cell Biol 20:8157–8167

    Article  CAS  Google Scholar 

  6. Friedberg EC, Siede W, Cooper AJ (1991) In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Vol. 1, pp 147–192

  7. Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM, Washington, DC

  8. Elledge SJ, Davis RW (1990) Genes Dev 4:740–751

    CAS  Google Scholar 

  9. Elledge SJ, Zhou Z, Allen, JB, Navas TA, Davis RW (1993) Bioessays 15:333–339

    Article  CAS  Google Scholar 

  10. Jia X, Zhu Y, Xiao W (2002) Mutat Res 519:83–92

    CAS  Google Scholar 

  11. Jia X, Xiao W (2003) Toxicol Sci 75:82–88

    Article  CAS  Google Scholar 

  12. Cole GM, Schild D, Lovett ST, Mortimer RK (1987) Mol Cell Biol 7:1078–1084

    CAS  Google Scholar 

  13. Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO (2001) Mol Biol Cell 12:2987–3003

    CAS  Google Scholar 

  14. Huang M, Zhou Z, Elledge SJ (1998) Cell 94:595–605

    Article  CAS  Google Scholar 

  15. Walsh L, Schmuckli-Maurer J, Billinton N, Barker MG, Heyer WD, Walmsley RM (2002) Curr Genet 41:232–240

    Article  CAS  Google Scholar 

  16. Afanassiev V, Sefton M, Anantachaiyong T, Barker G, Walmsley R, Wolfl S (2000) Mutat Res 464:297–308

    CAS  Google Scholar 

  17. Walmsley RM, Billinton N, Heyer WD (1997) Yeast 13:1535–1545

    Article  CAS  Google Scholar 

  18. Billinton N, Barker MG, Michel CE, Knight AW, Heyer WD, Goddard NJ, Fielden PR, Walmsley RM (1998) Biosens Bioelectron 13:831–838

    Article  CAS  Google Scholar 

  19. Knight AW, Goddard NJ, Billinton N, Cahill PA, Walmsley RM (2002) J Biochem Biophys Methods 51:165–177

    Article  CAS  Google Scholar 

  20. Lichtenberg-Frate H, Schmitt M, Gellert G, Ludwig J (2003) Toxicol In Vitro 17:709–716

    Article  CAS  Google Scholar 

  21. Cahill PA, Knight AW, Billinton N, Barker MG, Walsh L, Keenan PO, Williams, CV, Tweats DJ, Walmsley RM (2004) Mutagenesis 19:105–119

    Article  CAS  Google Scholar 

  22. Knight AW, Keenan PO, Goddard NJ, Fielden PR, Walmsley RM (2004) J Environ Monit 6:71–79

    Article  CAS  Google Scholar 

  23. Noguerol T, Boronat S, Jarque S, Barceló D, Piña B (2006) Talanta 69:358–359

    Google Scholar 

  24. Myung K, Kolodner RD (2003) DNA Repair (Amst) 2:243–258

    Article  CAS  Google Scholar 

  25. Drablos F, Feyzi E, Aas PA, Vaagbo CB, Kavli B, Bratlie MS, Pena-Diaz J, Otterlei M, Slupphaug G, Krokan HE (2004) DNA Repair (Amst) 3:1389–1407

    Article  CAS  Google Scholar 

  26. Thomas DC, Husain I, Chaney SG, Panigrahi GB, Walker IG (1991) Nucleic Acids Res 19:365–370

    Article  CAS  Google Scholar 

  27. Sebastian J, Kraus B, Sancar GB (1990) Mol Cell Biol 10:4630–4637

    CAS  Google Scholar 

  28. Koc A, Wheeler LJ, Mathews CK, Merrill GF (2004) J Biol Chem 279:223–230

    Article  CAS  Google Scholar 

  29. Jefferson RA, Kavanagh TA, Bevan MW (1987) Embo J 6:3901–3907

    CAS  Google Scholar 

  30. Goldstein AL, McCusker JH (1999) Yeast 15:1541–1553

    Article  CAS  Google Scholar 

  31. Johnston M, Carlson M (1992) Gene expression. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 193–282

  32. Riu J, Marinez E, Barceló D, Ginebreda A, Tirapu LL (2001) Fresenius J Anal Chem 371:448–455

    Article  CAS  Google Scholar 

  33. Farré M, Gonçalves C, Lacorte S, Barceló D, Alpendurada MF (2002) Anal Bioanal Chem 373:696–703

    Article  Google Scholar 

  34. Routledge E, Sumpter J (1996) Environ Toxicol Chem 15:241–248

    Article  CAS  Google Scholar 

  35. Garcia-Reyero N, Grau E, Castillo M, López de Alda MJ, Barceló D, Piña B (2001) Environ Toxicol Chem 20:1152–1158

    Article  CAS  Google Scholar 

  36. Shetty RS, Deo SK, Liu Y, Daunert S (2004) Biotechnol Bioeng 88:664–670

    Google Scholar 

  37. Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, Van der Meer JR (2003) Environ Sci Technol 37:4743–4750

    Article  CAS  Google Scholar 

  38. Ramanathan S, Shi WP, Rosen BP, Daunert S (1998) Anal Chim Acta 369:189–195

    Article  CAS  Google Scholar 

  39. Oda Y, Funasaka K, Kitano M, Nakama A, Yoshikura T (2004) Environ Mol Mutagen 43:10–19

    Article  CAS  Google Scholar 

  40. Carro D, Bartra E, Piña B (2003) Appl Environ Microbiol 69:2161–2165

    Article  CAS  Google Scholar 

Download references

Acknowlegments

This work has been supported by the Spanish Ministry for Science and Technology (BIO2005-00840 and GEN2001-4707-C08-08). The contribution of the Centre de Referència en Biotecnologia de la Generalitat de Catalunya is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Piña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boronat, S., Piña, B. Development of RNR3- and RAD54-GUS reporters for testing genotoxicity in Saccharomyces cerevisiae . Anal Bioanal Chem 386, 1625–1632 (2006). https://doi.org/10.1007/s00216-006-0751-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0751-4

Keywords

Navigation