Skip to main content
Log in

Comparison of two solid-phase microextraction methods for the quantitative analysis of VOCs in indoor air

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Competitive adsorption on adsorptive solid-phase microextraction (SPME) fibres implies careful determination of operating conditions for reliable quantitative analysis of VOCs in indoor air. With this objective, two analytical approaches, involving non-equilibrium and equilibrium extraction, were compared. The average detection limit obtained for GC-MS analysis of nine VOCs by the equilibrium method is 0.2 μg m−3, compared with 1.9 μg m−3 with the non-equilibrium method. The effect of the relative humidity of the air on the calibration plots was studied, and shown to affect acetone adsorption only. Hence, the concentrations that can be accurately determined are up to 9 μmol m−3. The methods were then applied to indoor air containing different concentrations of VOCs. The non-equilibrium method, involving short extraction time, can be used for detection of pollution peaks whereas equilibrium extraction is preferable for measurement of sub-μg m−3 ground concentration levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Maroni M, Seifert B, Lindvall T (eds) (1995) Indoor air quality: a comprehensive reference book. Elsevier, Amsterdam

    Google Scholar 

  2. Kotzias D (2005) Exp Toxicol Pathol 57:5–7

    Article  Google Scholar 

  3. Chai M, Pawliszyn J (1995) Environ Sci Technol 29:693–701

    Article  CAS  Google Scholar 

  4. International standard ISO 16000-6: 2004 (March 2004) Indoor air-part 6: determination of volatile organic compounds in indoor and test chamber by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID

  5. International standard ISO 16017-1: 2000 (November 2000) Indoor, ambient and workplace air-sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography-Part 1: pumped sampling

  6. Namieśnik J, Zabiega B, Kot-Wasik A, Partyka M, Wasik A (2005) Anal Bioanal Chem 381:279–301

    Article  Google Scholar 

  7. International standard ISO 16017-2: 2003 (May 2003) Indoor, ambient and workplace air-sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography-Part 2: diffusive sampling

  8. Pawliszyn J (1997) Solid phase micro extraction: theory and practice, 1st edn. Wiley-VCH, New York, NY pp 1–247

    Google Scholar 

  9. Razote E, Jeon I, Maghirang R, Chobpattana W (2002) J Environ Sci Health 37:365–378

    Google Scholar 

  10. Jia MY, Koziel J, Pawliszyn J (2000) Field Anal Chem Technol 4:73–84

    Article  CAS  Google Scholar 

  11. Chen Y, Pawliszyn J (2003) Anal Chem 75:2004–2010

    Article  CAS  Google Scholar 

  12. Tumbiolo S, Gal JF, Maria PC, Zerbinati O (2004) Anal Bioanal Chem 380:1618–2642

    Article  Google Scholar 

  13. Tuduri L, Desauziers V, Fanlo JL (2002) J Chromatogr A 963:49–56

    Article  CAS  Google Scholar 

  14. Tuduri L, Desauziers V, Fanlo JL (2001) J Chromatogr Sci 39:521–529

    CAS  Google Scholar 

  15. Tuduri L (2002) Ph.D. Thesis, University of Pau

  16. Tuduri L, Desauziers V, Fanlo JL (2003) Analyst 128:1028–1032

    Article  CAS  Google Scholar 

  17. Palmes ED, Gunnison AF (1993) Am Ind Hyg Assoc J 34:78–81

    Google Scholar 

  18. Incropera FP, DeWitt DP (1996) Fundamentals of heat and mass transfer, 4th edn. Wiley, New York, NY

    Google Scholar 

  19. Larroque V, Desauziers V, Mocho P (2006) J Environ Monit 8:106–111

    Article  CAS  Google Scholar 

  20. Shendell DG, Winer AM, Stock TH, Zhang L, Zhang JF, Maberti S, Colombe SD (2004) J Expo Anal Environ Epidemiol 14:44–59

    Article  CAS  Google Scholar 

  21. Guo H, Lee SC, Li WM, Cao JJ (2003) Atmos Environ 37:73–82

    Article  CAS  Google Scholar 

  22. Vega E, Mugica V, Carmona R, Valencia R (2001) Atmos Environ 35:4033–4039

    Article  CAS  Google Scholar 

  23. Tuduri L, Desauziers V, Fanlo JL (2000) J Microcolumn Sep 12:550–557

    Article  CAS  Google Scholar 

  24. Desauziers V (2004) Trends Anal Chem 23:252–260

    Article  CAS  Google Scholar 

  25. Larroque V, Desauziers V, Mocho P (2006) J Chromatogr A 1124:106–111

    Article  CAS  Google Scholar 

  26. Lundgren B, Jonsson B, Ek-Olausson B (1999) Indoor Air 9:202–208

    Article  CAS  Google Scholar 

  27. International standard ISO 16000-1: 2004 (July 2004) Indoor air-Part 1: General aspects of sampling strategy

  28. Batterman S, Metts T, Kalliokoski P (2002) J Environ Monit 4:870–878

    Article  CAS  Google Scholar 

  29. http://www.radiello.com 2006

Download references

Acknowledgements

The authors acknowledge the FEDER (European Funding for Regional Development) and the Aquitaine Region Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Desauziers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larroque, V., Desauziers, V. & Mocho, P. Comparison of two solid-phase microextraction methods for the quantitative analysis of VOCs in indoor air. Anal Bioanal Chem 386, 1457–1464 (2006). https://doi.org/10.1007/s00216-006-0714-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0714-9

Keywords

Navigation