Skip to main content
Log in

l-Glutamate biosensor for estimation of the taste of tomato specimens

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An amperometric biosensor has been developed for measurement of Umami, or the taste based on the amount of l-glutamate, in tomato foods. The biosensor is based on an enzyme-mediator system in which l-glutamate oxidase is used for biochemical oxidation of l-glutamate and a tetrafulvalene-tetracyanoquinodimethane (TTF-TCNQ) paste, prepared from the mixture of TTF-TCNQ salt, graphite powder, and silicone oil, serves as the mediator. The limit of detection, calculated by use of a four-parameter logistic model, was 0.05 mmol L−1, and the limit of quantification was 0.15 mmol L−1. The correlation coefficient (R 2) was 0.990 and the relative standard deviation was no more than 1% (n=5). The response time (τ 95) was 20–50 s, depending on concentration. The repeatability of the sensor was better than 5% (n=10). The sensor developed was stable for more than ten days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This work is carried out as part of the Innovative Functional Materials and Associated Technologies for the Development of New Improved Chemical Sensors (MICS), EU-Project No. GR01–2øøø–25288.

References

  1. Spackman DH, Stein WH, Moore S (1958) Anal Chem 30:1190

    Article  CAS  Google Scholar 

  2. Bellisle F (1999) Neurosci Biobehav Rev 23:423

    Article  CAS  Google Scholar 

  3. Legin A, Rudintskaya A, Vlasov Y (2002) Sens Upd 10:143

    Article  CAS  Google Scholar 

  4. Malinauskas A, Kulys J (1978) Anal Chim Acta 98:31

    Article  CAS  Google Scholar 

  5. Tamiya E, Karube I (1988) Sens Actuators B 15:199

    Article  CAS  Google Scholar 

  6. Wollenberger U, Scheller FW, Böhmer A, Passarge M, Müller HG (1989) Biosensors 4:381

    Article  CAS  Google Scholar 

  7. Chen CY, Su YC (1991) Anal Chim Acta 243:1

    Article  Google Scholar 

  8. Villarta RL, Cunningham DD, Guilbault GG (1991) Talanta 38:49

    Article  CAS  Google Scholar 

  9. Schalkhammer T, Lobmaier Ch, Ecker B, Wakolbinger W, Kynclova E, Hawa G, Pittner F (1994) Sens Actuators B 19:587

    Article  CAS  Google Scholar 

  10. Hu Y, Mitchell KM, Albahadili FN, Michaelis EK, Wilson GS (1994) Brain Res 659:117

    Article  CAS  Google Scholar 

  11. Kwong AWK, Gründig B, Hu J, Renneberg R (2000) Biotech Lett 22:267

    Article  CAS  Google Scholar 

  12. Kasai N, Jimbo Y, Niwa O, Matsue T, Torimitsu K (2001) Neurosci Lett 304:112

    Article  CAS  Google Scholar 

  13. Kurita R, Tabei H, Hayashi K, Horiuchi T, Torimitsu K, Niwa O (2001) Anal Chim Acta 441:165

    Article  CAS  Google Scholar 

  14. Jeffries C, Pasco N, Baronian K, Gorton L (1997) Biosens Bioelectron 12:225

    Article  CAS  Google Scholar 

  15. Janarthanan C, Mottola HA (1998) Anal Chim Acta 369:147

    Article  CAS  Google Scholar 

  16. Bang L, Tan W (1999) Anal Chim Acta 401:91

    Article  CAS  Google Scholar 

  17. Stefan RI, Aboul-Enein HY, van Staden JF (2002) Sens Update 10:123

    Article  CAS  Google Scholar 

  18. Qhobosheane M, Wu D, Gu Y, Tan W (2004) J Neurosci Meth 135:71

    Article  CAS  Google Scholar 

  19. Mulchadani A, Bassi AS (1996) Biosens Bioelectron 11:271

    Article  Google Scholar 

  20. O’Neill RD, Chang SC, Lowry JP, McNeil CJ (2004) Biosens Bioelectron 19:1521

    Article  CAS  Google Scholar 

  21. Mikeladze E, Collins A, Sukhacheva M, Netrusov A, Csöregi E (2002) Electroanalysis 14:1052

    Article  CAS  Google Scholar 

  22. Chang KS, Hsu WL, Chen HY, Chang CK, Chen CY (2003) Anal Chim Acta 481:199

    Article  CAS  Google Scholar 

  23. Nakajima K, Yamagiwa T, Hirano A, Sugawara M (2003) Anal Sci 19:55

    Article  CAS  Google Scholar 

  24. Niwa O, Horiuchi T, Torimitsu K (1997) Biosens Bioelectron 12:311

    Article  CAS  Google Scholar 

  25. Castillo J, Isik S, Blöchl A, Pereira-Rodrigues N, Bedioui F, Csöregi E, Schumman W, Oni J (2005) Biosens Bioelectron 20:1559

    Article  CAS  Google Scholar 

  26. Beyene NW, Moderegger H, Kalcher K (2003) South African J Chem 56:54

    CAS  Google Scholar 

  27. Korell U, Spichiger UE (1993) Electroanalysis 5:869

    Article  CAS  Google Scholar 

  28. Nagel S (2000) Bioworld 1:11

    Google Scholar 

  29. Spichiger-Keller UE (1998) Chemical sensors and biosensors for medical and biological applications. Wiley-VCH, Weinheim

    Google Scholar 

  30. Wang J (2000) Analytical electrochemistry, 2nd edn. Wiley-VCH, New York

    Google Scholar 

  31. Jaeger CD, Bard AJ (1979) J Am Chem Soc 101:1690

    Article  CAS  Google Scholar 

  32. EU-Project No GR01–2øøø–25288 Innovative functional materials and associated technologies for the development of new improved chemical sensors (MICS)

  33. Kulys J, Simkeviciene V, Higgins IJ (1992) Biosens Bioelectron 7:495

    Article  CAS  Google Scholar 

  34. Zhao S, Korell U, Cuccia L, Lennox RB (1992) J Phys Chem 96:5641

    Article  CAS  Google Scholar 

  35. Korell U, Lennox RB (1992) Anal Chem 64:147

    Article  CAS  Google Scholar 

  36. Korell U, Lennox RB (1993) J Electroanal Chem 351:137

    Article  CAS  Google Scholar 

  37. Korell U, Spichiger UE (1994) Electroanalysis 6:869

    Article  Google Scholar 

  38. Korell U, Spichiger UE (1994) Anal Chem 66:510

    Article  CAS  Google Scholar 

  39. Freund M, Bratjer-Toth A, Ward MD (1990) J Electroanal Chem 289:127

    Article  CAS  Google Scholar 

  40. Khan GF (1996) Sens Actuators B 36:484

    Article  Google Scholar 

  41. Konnors KA (1990) Chemical kinetics. The study of reaction rate in solution. VCH, New York

    Google Scholar 

  42. Lowry JP, O’Neil RD (1992) J Electroanal Chem 334:183

    Article  CAS  Google Scholar 

  43. Rezaei B, Ensafi AA, Nouroozi S (2005) Anal Sci 21:1067

    Article  CAS  Google Scholar 

  44. Lee KR, Dipaolo B, Ji X (2000) Drug Dev Ind Pharm 26:661

    Article  CAS  Google Scholar 

  45. Burns DT, Danzer K, Townshand A (2002) Pure Appl Chem 74:2201

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Unilever Foods Research Centre (Vlaardingen, the Netherlands) of the project “Innovative Functional Materials and Associated Technologies for the Development of New Improved Chemical Sensors (MICS), EU-Project No. GR01–2øøø–25288” for supply of tomato food samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula E. Spichiger-Keller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauliukaite, R., Zhylyak, G., Citterio, D. et al. l-Glutamate biosensor for estimation of the taste of tomato specimens. Anal Bioanal Chem 386, 220–227 (2006). https://doi.org/10.1007/s00216-006-0656-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0656-2

Keywords

Navigation