Skip to main content
Log in

Optimization of solid-phase microextraction procedures for the determination of tricyclic antidepressants and anticonvulsants in plasma samples by liquid chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Simple, sensitive, and reproducible off-line solid-phase microextraction and liquid chromatography (SPME/LC) methods are described for the determination of seven anticonvulsants and tricyclic antidepressants in human plasma. Factorial design and simplex methodology were applied in the optimization of the SPME procedure for tricyclic antidepressants analyses. Important factors in the SPME efficiency are discussed, such as the fiber coatings (both lab-made and commercial), extraction time, pH, ionic strength, influence of plasma proteins, and desorption conditions. The development of the lab-made fiber coatings, namely, octadecylsilane, aminosilane, and polyurethane, are further described and applied to anticonvulsants analyses. The investigated plasmatic range for the evaluated anticonvulsants, using CW-TPR fiber, were the following: phenylethylmalonamide (3.00–40.0 μg mL−1), phenobarbital (5.00–40.0 μg mL−1), primidone (3.00–40.0 μg mL−1), carbamazepine and carbamazepine-epoxide (2.00–24.0 μg mL−1), phenytoin (2.00–40.0 μg mL−1), and lamotrigine (0.50–12.0 μg mL−1). The antidepressants’ linear plasmatic concentration ranged from 75.0 to 500 ng mL−1 for imipramine, amitriptyline, and desipramine, and from 50.0 to 500 ng mL−1 for nortriptyline, being in all cases, the limit of quantification represented by the lowest value. The precision (interassays) for all investigated drugs in plasma sample spiked with different concentrations of each analyte and submitted to the described procedures were lower than 15%. The off-line SPME/LC methodologies developed allow anticonvulsants and antidepressants analyses from therapeutic to toxic levels for therapeutic drug monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muller MJ, Dragicevic A, Fric M, Gaertner I, Grasmader K, Hartter S, Hermann E, Kuss HJ, Laux G, Oehl W, Rao ML, Rollmann N, Weigmann H, Weber-Labonte M, Hiemke C (2003) Pharmacopsychiatry 36:98–104

    Article  CAS  Google Scholar 

  2. Le Bloc’h Y, Woggon B, Weissenrieder H, Brawand-Amey M, Spagnoli J, Eap CB, Baumann P (2003) Ther Drug Monit 25:600–608

    Article  Google Scholar 

  3. Romeiro LAS, Fraga CAM, Barreiro EJ (2003) Quim Nova 26:347–358

    Google Scholar 

  4. Shorvon S, Stefan H (1997) Epilepsia 38:S45–S51

    Article  CAS  Google Scholar 

  5. Frahnert C, Rao ML, Grasmäder K (2003) J Chromatogr B 794:35–47

    Article  CAS  Google Scholar 

  6. Mandrioli R, Ghedini N, Albani F, Kenndler E, Raggi MA (2003) J Chromatogr B 783:253–263

    Article  CAS  Google Scholar 

  7. Cantú MD, Hillebrand S, Queiroz MEC, Lanças FM, Carrilho E (2004) J Chromatogr B 799:127–132

    Article  Google Scholar 

  8. Queiroz MEC, Carrilho E, Carvalho D, Lanças FM (2001) Chromatographia 53:485–489

    Article  CAS  Google Scholar 

  9. Kollroser M, Schober C (2002) Ther Drug Monit 24:537–544

    Article  CAS  Google Scholar 

  10. Jinno K, Kawazoe M, Hayashida M (2000) Chromatographia 52:309–313

    Article  CAS  Google Scholar 

  11. Saito Y, Kawazoe M, Hayashida M, Jinno K (2000) Analyst 125:807–809

    Article  CAS  Google Scholar 

  12. Pawliszyn J (ed) (1999) Applications of solid phase microextraction. Royal Society of Chemistry, Cambridge, pp 1–72

    Google Scholar 

  13. Queiroz MEC, Silva SM, Carvalho D, Lanças FM (2001) J Environ Sci Health Part B 36:517–527

    Article  CAS  Google Scholar 

  14. Alpendurada MF (2000) J Chromatogr A 889:3–14

    Article  CAS  Google Scholar 

  15. Krutz LJ, Senseman SA, Saumbato AS (2003) J Chromatogr A 999:103–121

    Article  CAS  Google Scholar 

  16. Ulrich S (2000) J Chromatogr A 902:167–194

    Article  CAS  Google Scholar 

  17. Furton KG, Wang J, Hsu YL, Walton J, Almirall JR (2000) J Chromatogr Sci 38:297–306

    CAS  Google Scholar 

  18. Theodoridis G, Koster EHM, Jong GJ (2000) J Chromatogr B 745:49–82

    Article  CAS  Google Scholar 

  19. Snow NH (2000) J Chromatogr A 885:445–455

    Article  CAS  Google Scholar 

  20. Abdel-Rehim M, Hassan Z, Blomberg L, Hassan M (2003) Ther Drug Monit 25:400–406

    Article  CAS  Google Scholar 

  21. Frison G, Tedeschi L, Maietti S, Ferrara SD (2000) Rapid Commun Mass Spectrom 14:2401–2407

    Article  CAS  Google Scholar 

  22. Zambonin CG, Aresta A (2002) J Pharm Biomed Anal 28:895–900

    Article  Google Scholar 

  23. Walles M, Mullett WM, Pawliszyn J (2004) J Chromatogr A 1025:85–92

    Article  CAS  Google Scholar 

  24. Kumazawa T, Seno H, K Watanabe-Suzuki, Hattori H, Ishii A, Sato K, Suzuki O (2000) J Mass Spectrom 35:1091–1099

    Article  CAS  Google Scholar 

  25. Popp P, Bauer C, Moder M, Paschke A (2000) J Chromatogr A 897:153–159

    Article  CAS  Google Scholar 

  26. Sarrion MN, Santos FJ, Galceran MT (2002) J Chromatogr A 947:155–165

    Article  CAS  Google Scholar 

  27. Queiroz MEC, Silva SM, Carvalho D, Lanças FM (2002) J Sep Sci 25:91–95

    Article  CAS  Google Scholar 

  28. Araujo PW, Brereton RG (1996) Trends Anal Chem 15:26–31

    CAS  Google Scholar 

  29. Barros-Neto B, Scarmínio IS, Bruns RE (1996) Planejamento e otimização de experimentos. Editora da Unicamp, Campinas

    Google Scholar 

  30. Walters F (1999) Anal Lett 32:193–293

    Article  CAS  Google Scholar 

  31. Malmonge JA, Campoli CS, Malmonge LF, Kanda DHF, Mattoso LHC, Chierice GO (2001) Synthetic Metals 119:87–88

    Article  CAS  Google Scholar 

  32. Queiroz MEC, Lanças FM (2004) LCGC North America 22:970–980

    CAS  Google Scholar 

  33. Queiroz MEC, Carvalho D, Lanças FM (2002) J Chromatogr Sci 40:219–223

    CAS  Google Scholar 

  34. Pawliszyn J (1997) Solid Phase Microextraction: theory and practice. Wiley, New York, pp 1–139

    Google Scholar 

  35. Miller JC, Miller JN (1993) Statistics for analytical chemistry. Ellis Horwood Prentice Hall, New York

    Google Scholar 

  36. Ulrich S, Martens J (1997) J Chromatogr B 696:217–234

    Article  CAS  Google Scholar 

  37. Queiroz RHC, Lanchote VL, Bonato PS, Carvalho D (1995) Pharmaceutica Acta Helvetiae 70:181–186

    Article  CAS  Google Scholar 

  38. Queiroz MEC, Carrilho E, Carvalho D, Lanças FM (2001) Chromatographia 53:485–489

    Article  CAS  Google Scholar 

  39. Namera A, Yashiki M, Liu J, Hara K, Imamura T, Kojima T (2000) Forensic Sci Int 109:215–223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial suport and fellowships from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Eugênia Costa Queiroz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantú, M.D., Toso, D.R., Lacerda, C.A. et al. Optimization of solid-phase microextraction procedures for the determination of tricyclic antidepressants and anticonvulsants in plasma samples by liquid chromatography. Anal Bioanal Chem 386, 256–263 (2006). https://doi.org/10.1007/s00216-006-0629-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0629-5

Keywords

Navigation