Skip to main content
Log in

Simultaneous determination of urinary hydroxylated metabolites of naphthalene, fluorene, phenanthrene, fluoranthene and pyrene as multiple biomarkers of exposure to polycyclic aromatic hydrocarbons

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method is presented for determining monohydroxy polycyclic aromatic hydrocarbons (OHPAHs) having 2-, 3- and 4-rings in human urine by using high-performance liquid chromatography with fluorescence detection. A urine sample containing conjugates of OHPAHs was hydrolysed in the presence of β-glucuronidase/aryl sulfatase and the solution was cleaned up with a solid-phase extraction (C18 and silica). Eight OHPAHs, namely 1- and 2-hydroxynaphthalenes, 2-hydroxyfluorene, 2-, 3- and 4-hydroxyphenanthrenes, 3-hydroxyfluoranthene and 1-hydroxypyrene, were separated and 1- and 9-hydroxyphenanthrenes co-eluted on an alkylamide-type reversed-phase column with fluorimetric detection. The urinary concentrations of OHPAHs were quantified by using deuterated 1-hydoxypyrene as an internal standard. The method showed good repeatability for inter- and intra-day precisions as well as good linearity of calibration curves (r 2 ranged from 0.996 to 0.999). The limits of detection (S/N=3) were in the range from 2.3 fmol to 2.2 pmol per injection. This method was successfully applied to urine samples from non-smoking taxi drivers, traffic policemen and rural villagers of Chiang Mai, Thailand. The results showed higher urinary concentrations of OHPAHs in rural villagers, consistent with higher respiratory exposure to PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. IARC; International Agency for Research on Cancer (1983) WHO 32(Part 1):155–161, 225–231

    Google Scholar 

  2. Kizu R, Okamura K, Toriba A, Kakishima H, Mizokami A, Burnstein KL, Hayakawa K (2003) Arch Toxicol 77:335–343

    CAS  Google Scholar 

  3. Okamura K, Kizu R, Toriba A, Murahashi T, Mizokami A, Bunstein KL, Klinge CM, Hayakawa K (2004) Toxicology 195:243–254

    Article  CAS  Google Scholar 

  4. Jongeneelen FJ, Anzion RB, Henderson PT (1987) J Chromatogr A 413:227–232

    Article  CAS  Google Scholar 

  5. Strickland P, Kang D (1999) Toxicol Lett 108:191–199

    Article  CAS  Google Scholar 

  6. Bouchard M, Viau C (1999) Biomarkers 4:159–187

    Article  CAS  Google Scholar 

  7. Jacob J, Seidel A (2002) J Chromatogr B 778:31–47

    Article  CAS  Google Scholar 

  8. Toriba A, Chetiyanukornkul T, Kizu R, Hayakawa K (2003) Analyst 128:605–610

    Article  CAS  Google Scholar 

  9. Chetiyanukornkul T, Toriba A, Kizu R, Hayakawa K (2004) Polycycl Aromat Compd 24:474–476

    Google Scholar 

  10. Gmeiner G, Stehlik G, Tausch H (1997) J Chromatogr A 767:163–169

    Article  CAS  Google Scholar 

  11. Hoffmann D, Hoffmann I (1997) J Toxicol Environ Health 50:307–364

    Article  CAS  Google Scholar 

  12. Traynor GW, Apte MG, Sokol HA, Chuang JC, Tucker WG, Mumford JL (1990) Environ Sci Technol 24:1265–1270

    Article  CAS  Google Scholar 

  13. Mitra S, Ray B (1995) Atmos Environ 29:3345–3356

    Article  CAS  Google Scholar 

  14. Chuang JC, Callahan PJ, Lyu CW, Wilson NK (1999) J Expo Anal Environ Epidemiol 9:85–98

    Article  CAS  Google Scholar 

  15. Ohura T, Sugiyama T, Amagai T, Fusaya M, Matsushita H (2002) J AOAC Int 85:188–202

    CAS  Google Scholar 

  16. Kuusimäki L, Peltonen Y, Mutanen P, Peltonen K, Savela K (2004) Int Arch Occup Environ Health 77:23–30

    Article  CAS  Google Scholar 

  17. Lintelmann J, Hellemann C, Kettrup A (1994) J Chromatogr B 660:67–73

    Article  CAS  Google Scholar 

  18. Angerer J, Mannschreck C, Gündel J (1997) Int Arch Occup Environ Health 69:323–331

    Article  CAS  Google Scholar 

  19. Elovaara E, Väänänen V, Mikkola J (2003) Arch Toxicol 77:183–193

    CAS  Google Scholar 

  20. Serdar B, Waidyanatha S, Zheng Y, Rappaport SM (2003) Biomarkers 8:93–109

    Article  CAS  Google Scholar 

  21. Smith CJ, Huang W, Walcott CJ, Turner W, Grainger J, Patterson DG (2002) Anal Bioanal Chem 372:216–220

    Article  CAS  Google Scholar 

  22. Chetiyanukornkul T, Toriba A, Kizu R, Makino T, Nakazawa H, Hayakawa K (2002) J Chromatogr A 961:107–112

    Article  CAS  Google Scholar 

  23. Bonsnes RW, Taussky HH (1945) J Biol Chem 158:581–591

    CAS  Google Scholar 

  24. Kamiya M, Toriba A, Onoda Y, Kizu R, Hayakawa K (2005) Food Chem Toxicol 43:1017–1027

    Article  CAS  Google Scholar 

  25. Toriba A, Kuramae Y, Chetiyanukornkul T, Kizu R, Makino T, Nakazawa H, Hayakawa K (2003) Biomed Chromatogr 17:126–132

    Article  CAS  Google Scholar 

  26. Grimmer G, Dettbarn G, Naujack KW, Jacob J (1991) Intern J Environ Anal Chem 43:177–186

    Article  CAS  Google Scholar 

  27. Jongeneelen FJ (2001) Ann Occup Hyg 45:3–13

    CAS  Google Scholar 

  28. Ezzati M, Kammen DM (2002) Environ Health Perspect 110:1057–1068

    Google Scholar 

  29. Smith KR, Samet JM, Romieu L, Bruce N (2000) Thorax 55:518–532

    Article  CAS  Google Scholar 

  30. Vatanasapt V, Martin N, Sriplung H, Chindavijak K, Sontipong S, Sriamporn H, Parkin DM, Ferlay J (1995) Cancer Epidemiol Biomarkers Prev 4:475–483

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by the Industrial Technology Research Grant Program in 2005 from New Energy and Industrial Technology Development Organization (NEDO) of Japan (ID: 05A21705a), and by the Kanazawa University 21-Century COE Program. We thank Assoc. Prof. Dr. Tippawan Prapamontol, Assoc. Prof. Dr. Prasak Thavornyutthikarn and Parinya Phanuwet, Chiang Mai University, for the sample collection in Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Toriba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetiyanukornkul, T., Toriba, A., Kameda, T. et al. Simultaneous determination of urinary hydroxylated metabolites of naphthalene, fluorene, phenanthrene, fluoranthene and pyrene as multiple biomarkers of exposure to polycyclic aromatic hydrocarbons. Anal Bioanal Chem 386, 712–718 (2006). https://doi.org/10.1007/s00216-006-0628-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0628-6

Keywords

Navigation