Skip to main content
Log in

Sensitivity improvement in capillary electrophoresis using organo-aqueous separation buffers and thermal lens detection

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

It is shown that organo-aqueous separation buffers show much promise when used in capillary electrophoresis separations with photothermal (thermal lens) detection systems. Acetonitrile–water and methanol–water mixtures were selected, as conventionally used in capillary electrophoresis. It is shown that, despite more sophisticated experimental conditions (significant heat outflow from the capillary body) and peak detection, the theoretical ratio of the thermal lens signal for a binary mixture to the thermal lens signal for an aqueous solution (or the corresponding ratio obtained experimentally under bulk batch conditions) can be used to predict the sensitivity of thermal lens detection in capillary electrophoresis. The limits of detection for 2-, 3-, and 4-nitrophenols selected as model compounds in 70% v/v acetonitrile separation buffers are 1×10−6 M, 1×10−6 M and 3×10−7 M, respectively, and are therefore decreased by a factor of six compared to thermal lens detection in aqueous separation buffers. The overall increase in the thermal lens detection sensitivity in a 100% ACN buffer is a factor of 13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 a, b
Fig. 4
Fig. 5 a, b
Fig. 6

Similar content being viewed by others

References

  1. Yu M, Dovichi NJ (1989) Appl Spectrosc 43(2):196–201

    Article  CAS  Google Scholar 

  2. Waldron KC, Dovichi NJ (1992) Anal Chem 64:1396–1399

    CAS  Google Scholar 

  3. Qi M, Li X-F, Stathakis C, Dovichi NJ (1999) J Chromatogr A 853:131–140

    Article  CAS  Google Scholar 

  4. Waldron KC, Li J (1996) J Chromatogr B 683:47–54

    Article  CAS  Google Scholar 

  5. Malik AK, Faubel W (2000) Chem Soc Rev 29:275–282

    Article  CAS  Google Scholar 

  6. Li X-F, Liu C-S, Roos P, Hansen EB Jr, Cerniglia C, Dovichi NJ (1998) Electrophoresis 19:3178–3182

    Article  CAS  Google Scholar 

  7. Li X-F, Carter SJ, Dovichi NJ (2000) J Chromatogr A 895:81–85

    Article  CAS  Google Scholar 

  8. Ragozina NY, Pütz M, Heissler S, Faubel W, Pyell U (2004) Anal Chem 76:3804–3809

    Article  CAS  Google Scholar 

  9. Riekkola M-L, Wiedmer SK, Valko IE, Siren H (1997) J Chromatogr A 792:13–35

    Article  CAS  Google Scholar 

  10. Porras SP, Kenndler E (2005) Electrophoresis 26:3203–3220

    Article  CAS  Google Scholar 

  11. Bialkowski SE (1996) Photothermal spectroscopy methods for chemical analysis. Wiley, New York (and references cited therein)

  12. Šikovec M, Franko M, Novič M, Veber M (2001) J Chromatogr A 920:119–125

    Article  Google Scholar 

  13. Kožar Logar J, Šikovec M, Malej A, Franko M (2002) Anal Bioanal Chem 374:323–328

    Article  Google Scholar 

  14. Kožar Logar J, Franko M (2003) Rev Sci Instrum 74(1):300–302

    Article  Google Scholar 

  15. Tokeshi M, Uchida M, Hibara A, Sawada T, Kitamori T (2001) Anal Chem 73:2112–2116

    Article  CAS  Google Scholar 

  16. Ghaleb KA, Georges J (2004) Spectrochim Acta 60:863–872

    Article  Google Scholar 

  17. Proskurnin MA, Bendrysheva SN, Ragozina N, Heissler S, Faubel W, Pyell U (2005) Appl Spectrosc 59:1470–1479

    Article  CAS  Google Scholar 

  18. Proskurnin MA, Abroskin AG, Radushkevich DYu (1999) J Anal Chem (Russ) 54(5):401–408

    CAS  Google Scholar 

  19. Proskurnin MA, Kuznetsova VV (2000) Anal Chim Acta 418:101–111

    Article  CAS  Google Scholar 

  20. Smith GF, Richter FP (1944) Phenanthroline and substituted phenanthroline indicators. Their preparation, properties and application to analysis. Smith Chemical, Columbus, OH

  21. Fischer M, Georges J (1996) Anal Chim Acta 322:117–130

    Article  CAS  Google Scholar 

  22. Snook RD, Lowe RD (1995) Analyst 120(8):2051–2068 (and references cited therein)

  23. Filippov LP (1955) Vestnik Mosk gos Univ, Ser Fiz-Mat i Estestven Nauk 10(8):67–69 (in Russian)

    CAS  Google Scholar 

  24. Lide DR (1995) CRC handbook of chemistry and physics, 76th edn. CRC, New York

    Google Scholar 

  25. Hirschfelder JO, Curtiss CF, Bird RB (1954, revised 1964) Molecular theory of gases and liquids. Wiley, New York (Russian translation)

  26. Proskurnin MA, Ivleva VB, Ragozina NYu, Ivanova EK (2000) Anal Sci 16:1–5

    Article  Google Scholar 

  27. Inczédy J, Lengyel T, Ure AM (eds) (1998) Compendium on analytical nomenclature (definitive rules 1997), 3rd edn. Blackwell Science, New York

  28. Rose DJ, Jorgenson JW (1988) Anal Chem 60:642–648

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft for financial support of this cooperation project (PY 6/8-1). The authors thank Mr. Martin Mensch, a freelance engineer (Karlsruhe, Germany), for creating the pilot version of the detector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana N. Bendrysheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendrysheva, S.N., Proskurnin, M.A., Pyell, U. et al. Sensitivity improvement in capillary electrophoresis using organo-aqueous separation buffers and thermal lens detection. Anal Bioanal Chem 385, 1492–1503 (2006). https://doi.org/10.1007/s00216-006-0602-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0602-3

Keywords

Navigation