Skip to main content
Log in

Integration of microcolumns and microfluidic fractionators on multitasking centrifugal microfluidic platforms for the analysis of biomolecules

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work demonstrates the development of microfluidic compact discs (CDs) for protein purification and fractionation integrating a series of microfluidic features, such as microreservoirs, microchannels, and microfluidic fractionators. The CDs were fabricated with polydimethylsiloxane (PDMS), and each device contained multiple identical microfluidic patterns. Each pattern employed a microfluidic fractionation feature with operation that was based on the redirection of fluid into an isolation chamber as a result of an overflow. This feature offers the advantage of automated operation without the need for any external manipulation, which is independent of the size and the charge of the fractionated molecules. The performance of the microfluidic fractionator was evaluated by its integration into a protein purification microfluidic architecture. The microfluidic architecture employed a microchamber that accommodated a monolithic microcolumn, the fractionator, and an isolation chamber, which was also utilized for the optical detection of the purified protein. The monolithic microcolumn was polymerized “in situ” on the CD from a monolith precursor solution by microwave-initiated polymerization. This technique enabled the fast, efficient, and simultaneous polymerization of monoliths on disposable CD microfluidic platforms. The design of the CD employed allows the integration of various processes on a single microfluidic device, including protein purification, fractionation, isolation, and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mitchell P (2001) Nat Biotechnol 19:717–721

    Article  PubMed  CAS  Google Scholar 

  2. Sia SK, Whitesides GM (2003) Electrophoresis 24:3563–3576

    Article  PubMed  CAS  Google Scholar 

  3. Kataoka H (2003) TRAC 22:232–244

    CAS  Google Scholar 

  4. Vilkner T, Janasek D, Manz A (2003) Electrophoresis 24:3563–3576

    Article  PubMed  CAS  Google Scholar 

  5. Mijatovic D, Eijkel JCT, van den Berg A (2005) Lab Chip 5:492–500

    Article  PubMed  CAS  Google Scholar 

  6. de Mello AJ (2002) Anal Bioanal Chem 372:12–13

    Article  PubMed  CAS  Google Scholar 

  7. Reyes R, Iossifidis D, Auroux PA, Manz A (2002) Anal Chem 74:2623–2636

    Article  PubMed  CAS  Google Scholar 

  8. Becker H, Locascio LE (2002) Talanta 56:267–287

    Article  CAS  Google Scholar 

  9. de Mello AJ, Beard N (2003) Lab Chip 3:11N–19N

    Article  PubMed  CAS  Google Scholar 

  10. Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Anal Chem 74:2637–2652

    Article  PubMed  CAS  Google Scholar 

  11. Fredrickson CK, Fan ZH (2005) Lab Chip 4:526–533

    Article  CAS  Google Scholar 

  12. Felton MJ (2003) Anal Chem 75:505A–508A

    CAS  Google Scholar 

  13. Miao J, Wu W, Spielmann T, Belfort M, Derbyshireb V, Belfort G (2005) Lab Chip 5:248–253

    Article  PubMed  CAS  Google Scholar 

  14. Madou MJ, Lee LJ, Daunert S, Lai S, Shih CH (2001) Biomed Microdevices 3:245–254

    Article  CAS  Google Scholar 

  15. Grumann M, Geipel A, Riegger L, Zengerle R, Ducree J (2005) Lab Chip 5:560–565

    Article  PubMed  CAS  Google Scholar 

  16. Felton MJ (2003) Anal Chem 75:302A–306A

    PubMed  CAS  Google Scholar 

  17. Ehrnstrom R (2002) Lab Chip 2:26N–30N

    Article  PubMed  CAS  Google Scholar 

  18. Badr IH, Johnson RD, Madou MJ, Bachas LG (2002) Anal Chem 74:5569–5575

    Article  PubMed  CAS  Google Scholar 

  19. Lai S, Wang S, Luo J, Lee LJ, Yang ST, Madou M (2004) Anal Chem 76:1832–1837

    Article  PubMed  CAS  Google Scholar 

  20. Khandurina J, Guttman A (2002) J Chromatogr A 943:159–183

    Article  PubMed  CAS  Google Scholar 

  21. Breadmore MC, Shrinivasan S, Wolfe KA, Power ME, Ferrance JP, Hosticka B, Norris PM, Landers JP (2002) Electrophoresis 23:3487–3495

    Article  PubMed  CAS  Google Scholar 

  22. Hong JW, Quake SR (2003) Nat Biotechnol 21:1179–1183

    Article  PubMed  CAS  Google Scholar 

  23. Lion N, Rohner TC, Dayon L, Arnaud IL, Damoc E, Youhnovski N, Wu ZY, Roussel C, Josserand J, Jensen H, Rossier JS, Przybylski M, Girault HH (2003) Electrophoresis 24:3533–3562

    Article  PubMed  CAS  Google Scholar 

  24. Vilkner T, Janasek D, Manz A (2004) Anal Chem 76:3373–3386

    Article  PubMed  CAS  Google Scholar 

  25. Spesny M, Foret F (2003) Electrophoresis 24:3745–3747

    Article  PubMed  CAS  Google Scholar 

  26. Khandurina J, Chovan T, Guttman A (2002) Anal Chem 74:1737–1740

    Article  PubMed  CAS  Google Scholar 

  27. Lin R, Burke DT, Burns MA (2005) Anal Chem 77:4338–4347

    Article  PubMed  CAS  Google Scholar 

  28. Hattori W, Someya H, Baba M, Kawaura H (2004) J Chromatogr A 1051:141–146

    Article  PubMed  CAS  Google Scholar 

  29. Huang LR, Tegenfeldt JO, Kraeft JJ, Sturm JC, Austin RH, Cox EC (2002) Nat Biotechnol 20:1048–1051

    Article  PubMed  CAS  Google Scholar 

  30. Foster BL, Cournoyer ME (2005) Chem Health Safety 12:27–32

    Article  CAS  Google Scholar 

  31. Puckett LG, Lewis JC, Bachas LG, Daunert S (2002) Anal Biochem 309:224–231

    Article  PubMed  CAS  Google Scholar 

  32. Johnson RD, Badr IHA, Barrett G, Lai S, Lu Y, Madou MJ, Bachas LG (2001) Anal Chem 73:3940–3946

    Article  PubMed  CAS  Google Scholar 

  33. Yu C, Davey MH, Svec F, Frechet JM (2001) Anal Chem 73:5088–5096

    Article  PubMed  CAS  Google Scholar 

  34. Svec F, Frechet JMJ (1995) J Chromatogr A 702:89–95

    Article  PubMed  CAS  Google Scholar 

  35. Grasselli M, Smolko E, Hargittai P, Safrany A (2001) Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 185:254–261

    Article  CAS  Google Scholar 

  36. Svec F, Frechet JMJ (1995) Chem Mater 7:707–715

    Article  CAS  Google Scholar 

  37. Wang T, Zhu X, Cheng Z, Zhou N, Lu J (2003) Polym J 35:399–401

    Article  CAS  Google Scholar 

  38. Wang T, Liu J (2000) J Electron Manuf 10:181–189

    Article  CAS  Google Scholar 

  39. Efimenko K, Wallace WE, Genzer J (2002) J Colloid Interf Sci 254:306–315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Aeronautics and Space Administration and the National Institutes of Health (grant # GM 047915-10). We thank Mr. Pramod Nednoor for his help with the scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Daunert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moschou, E.A., Nicholson, A.D., Jia, G. et al. Integration of microcolumns and microfluidic fractionators on multitasking centrifugal microfluidic platforms for the analysis of biomolecules. Anal Bioanal Chem 385, 596–605 (2006). https://doi.org/10.1007/s00216-006-0436-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0436-z

Keywords

Navigation