Skip to main content
Log in

Design of a method for generation of gas-phase hydroxyl radicals, and use of HPLC with fluorescence detection to assess the antioxidant capacity of natural essential oils

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of natural antioxidants is of increasing importance in the human diet, because they are recognised as compounds essential to health which minimize or delay the aging process. Despite apparent simplicity, however, it is very difficult to measure and quantify such properties, for which a robust analytical method is required. Because oxidation usually is caused by the presence of OH· radicals, a new method involving the in-situ, vapour-phase generation of these radicals and their quantification in the presence and absence of potential antioxidant extracts has been developed. The oxidant atmosphere generated from hydrogen peroxide is carried by an air stream through an empty quartz chamber in which UV radiation promotes the formation of radicals by a photochemical reaction. The products then pass through a cartridge containing the essential oil, finally bubbling into an impinger containing an aqueous solution of salicylic acid, at pH 4.5, which reacts with the OH· radicals forming 2,5-dihydroxybenzoic acid. This solution is quantified by RP-HPLC using UV and fluorescence detectors connected in series. Detection and quantification limits for OH· radicals were approximately 0.01 pg g−1 air. Description and optimization of the method are discussed, as also is the antioxidant performance of an extract of ginger (Zingiber officinale R.), which reduced the oxidation process by up to 92%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tovar L, Salafranca J, Sánchez C, Nerín C (2005) J Agric Food Chem 53:5270–5275

    Article  PubMed  CAS  Google Scholar 

  2. López P, Sánchez C, Batlle R, Nerín C (2005) J Agric Food Chem 53:6939–6946

    Article  PubMed  CAS  Google Scholar 

  3. Kranl K, Schlesier K, Bitsch R, Hermann H, Rohe M, Bohm V (2005) Food Chem 93:171–175

    Article  CAS  Google Scholar 

  4. Mantle D, Anderton JG, Falkous G, Barnes M, Jones P, Perry EK (1998) Comp Biochem Phys B 121:385–391

    Article  Google Scholar 

  5. Rey AI, Hopia A, Kivikari R, Kahkonen M (2005) LWT Food Sci Technol 38:363–370

    Article  CAS  Google Scholar 

  6. Tang B, Zhang L, Geng Y (2005) Talanta 65:769–775

    Article  CAS  Google Scholar 

  7. Salmon RA, Schiller CL, Harris GW (2004) J Atmos Chem 48:81–104

    Article  CAS  Google Scholar 

  8. Librando V, Tringali G (2005) J Environ Manage 75:275–282

    Article  PubMed  CAS  Google Scholar 

  9. Li LX, Abe Y, Nagasawa Y, Kudo R, Usui N, Imai K, Mashino T, Mochizuki M, Miyata N (2004) Biomed Chromatogr 18:470–474

    Article  PubMed  CAS  Google Scholar 

  10. Mason TJ, Lorimer JP, Bates DM, Zhao Y (1994) Ultrason Sonochem 1:S91–S95

    Article  CAS  Google Scholar 

  11. Benito Y, Arrojo S, Nerín C (2004) Unpublished results

  12. Nuñez MT, Tapia V, Toyokuni S, Okada S (2001) Free Radical Res 34:57–68

    Article  Google Scholar 

  13. Golden MC, Hahm SJ, Elessar RE, Saksonov S, Steinberg JJ (1998) Mycoses 41:97–104

    Article  PubMed  CAS  Google Scholar 

  14. Halliwell B, Kaur H, Ingelman-Sundberg M (1991) Free Radical Bio Med 10:439–441

    Article  CAS  Google Scholar 

  15. Halliwell B, Grootveld M (1988) Method Biochem Anal 33:59–90

    Article  CAS  Google Scholar 

  16. Dupont I, Berthou F, Bodenez P, Bardou L, Guirriec C, Stephan N, Dreano Y, Lucas D (1999) Drug Metab Dispos 27:322–326

    PubMed  CAS  Google Scholar 

  17. Ingelman-Sundberg M, Kaur H, Terelius Y, Persson JO, Halliwell B (1991) Biochem J 276:753–757

    PubMed  CAS  Google Scholar 

  18. Strolin-Benedetti M, Brogin G, Bani M, Oesch F, Hengstler JG (1999) Xenobiotica 29:1171–1180

    Article  PubMed  CAS  Google Scholar 

  19. Lang K, Brodilova J, Lunak S (1996) Collect Czech Chem C 61:1729–1737

    Article  CAS  Google Scholar 

  20. Buxton GV, Langan JR, Smith JRL (1986) J Phys Chem 90:6309–6313

    Article  CAS  Google Scholar 

  21. Daniel CH (2001) Quantitative chemical analysis, 5th edn. Reverté, Barcelona

    Google Scholar 

  22. Jen JF, Leu MF, Yang TC (1998) J Chromatogr A 796:283–288

    Article  CAS  Google Scholar 

  23. Lang K, Wagnerova DM, Brodilova J (1994) Collect Czech Chem C 59:2447–2453

    Article  CAS  Google Scholar 

  24. García I, Ortiz MC, Sarabia L, Vilches C, Gredilla E (2003) J Chromatogr A 992:11–27

    Article  PubMed  CAS  Google Scholar 

  25. Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Food Chem 91:621–632

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper has been financed by the Project CAL03-080-from INIA – Ministerio de Ciencia y Tecnología, Spain. D. Pezo acknowledgements the grant obtained from SCH – University of Zaragoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Nerín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pezo, D., Salafranca, J. & Nerín, C. Design of a method for generation of gas-phase hydroxyl radicals, and use of HPLC with fluorescence detection to assess the antioxidant capacity of natural essential oils. Anal Bioanal Chem 385, 1241–1246 (2006). https://doi.org/10.1007/s00216-006-0395-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0395-4

Keywords

Navigation