Skip to main content
Log in

Spatial distributions of the number densities of neutral atoms and ions for the different elements in a laser induced plasma generated with a Ni-Fe-Al alloy

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Spatially-resolved emission spectroscopy, including spatial devonvolution of the spectra, has been used to determine the three-dimensional distributions of the relative number densities of neutral atoms and ions of the elements present in a laser-induced plasma generated with a Ni-Fe-Al alloy. The method is based on the precise measurement of the local electronic temperature from Saha–Boltzmann plots constructed with Fe I and Fe II lines. The plasma was generated in air at atmospheric pressure using a 1064-nm Nd:YAG laser, and the emission was detected in the time window 3.0–3.5 μs. The ionization fraction was very high (above 0.9) for the three elements in the sample, only decreasing behind the expanding plasma front. The relative number densities were obtained from the emissivities of selected elemental lines as well as the temperature. The error in this procedure was estimated, and it was found that it is largely due to the uncertainties in the transition probability values used. The spatial distributions of the total relative number densities of the three elements were shown to coincide within the error, a result which is relevant to the development of models of plasma emission used in analytical applications. The ratios of the total number densities of the elements in the plasma were compared to their concentration ratios in the sample; however, the relatively high errors in the relative number densities did not permit any definitive conclusions to be drawn about the stoichiometry of the laser ablation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–b
Fig. 4a–b
Fig. 5
Fig. 6a–b

Similar content being viewed by others

References

  1. Geohegan DB (1994) In: Chrisey DB, Hubler GK (eds) Pulsed laser deposition of thin films. Wiley, New York

  2. Geohegan DB (1992) Appl Phys Lett 60:2732–2734

    Article  ADS  CAS  Google Scholar 

  3. Al-Wazzan RA, Hendron JM, Morrow T (1996) Appl Surf Sci 96–98:170–174

    Article  Google Scholar 

  4. Multary RA, Foster LE, Cremers DA, Ferris MJ (1996) Appl Spectrosc 50:1483–1495

    Article  ADS  Google Scholar 

  5. Bulatov V, Xu L, Schechter I (1996) Anal Chem 68:2966–2973

    Article  CAS  Google Scholar 

  6. Sdorra W, Niemax K (1990) Spectrochim Acta Part B 45:917–926

    Article  ADS  Google Scholar 

  7. Sappey AD, Gamble TK (1992) J Appl Phys 72:5095–5107

    Article  ADS  CAS  Google Scholar 

  8. Martin GW, Doyle A, Al-Khateeb A, Weaver I, Riley D, Lamb MJ, Morrow T, Lewis CLS (1998) Appl Surf Sci 127–129:710–715

    Article  Google Scholar 

  9. Williamson TP, Martin GW, El-Astal AH, Al-Khateeb A, Weaver I, Riley D, Lamb MJ, Morrow T, Lewis CLS (1999) Appl Phys A 69:S863–S865

    Article  Google Scholar 

  10. Grant KJ, Paul GL (1990) Appl Spectrosc 44:1349–1354

    Article  ADS  Google Scholar 

  11. Lee Y-I, Sawan SP, Thiem TL, Teng Y-Y, Sneddon J (1992) Appl Spectrosc 46:436–441

    Article  ADS  CAS  Google Scholar 

  12. Simeonsson JB, Miziolek AW (1993) Appl Opt 32:939–947

    Article  ADS  CAS  Google Scholar 

  13. Sabsabi M, Cielo P (1995) Appl Spectrosc 49:499–502

    Article  ADS  CAS  Google Scholar 

  14. Hermann J, Toman AL, Boulmer-Leborgne C, Dubreuil B, De Giorgi ML, Perrone A, Luches A, Mihailescu IN (1995) J Appl Phys 77:2928–2936

    Article  ADS  CAS  Google Scholar 

  15. Harilal SS, Bindhu CV, Nampoori VPN, Vallabhan CPG (1998) Appl Spectrosc 52:449–455

    Article  ADS  CAS  Google Scholar 

  16. Yalçin Ş, Crosley DR, Smith GP, Faris GW (1999) Appl Phys B 68:121–130

    Article  ADS  Google Scholar 

  17. Aguilera JA, Aragón C (2002) Appl Surf Sci 197–198:273–280

    Article  Google Scholar 

  18. Aguilera JA, Aragón C (2004) Spectrochim Acta Part B 59:1861–1876

    Article  CAS  Google Scholar 

  19. Aguilera JA, Aragón C (2006) J Phys Conf Ser (in press)

  20. Boumans PWJM (1966) Theory of spectrochemical excitation. Hilger & Watts, London

  21. Radziemski L, Loree TR, Cremers DA, Hoffman NM (1983) Anal Chem 55:1246–1252

    Article  CAS  Google Scholar 

  22. Aragón C, Peñalba F, Aguilera JA (2004) Appl Phys A 79:1145–1148

    Article  ADS  CAS  Google Scholar 

  23. Aguilera JA, Aragón C, Bengoechea J (2003) Appl Opt 42:5938–5946

    PubMed  ADS  CAS  Google Scholar 

  24. Detalle V, Héon R, Sabsabi M, St-Onge L (2001) Spectrochim Acta Part B 56:1011–1025

    Google Scholar 

  25. NIST (2005) NIST atomic spectra database. National Institute of Standards and Technology, Gaithersburg, MD (see http://physics.nist.gov, last accessed 19th January 2006)

  26. Aguilera JA, Bengoechea J, Aragón C (2003) Spectrochim Acta Part B 58:221–237

    Google Scholar 

  27. Aragón C, Peñalba F, Aguilera JA (2005) Spectrochim Acta Part B 60:879–887

    Google Scholar 

  28. Bengoechea J, Aragón C, Aguilera JA (2005) Spectrochim Acta Part B 60:897–904

    Google Scholar 

  29. Griem HR (1997) Principles of plasma spectroscopy. Cambridge University Press, Cambridge

  30. Geohegan DB, Puretzky AA (1996) Appl Surf Sci 96–98:131–138

  31. Al-Wazzan RA, Hendron JM, Morrow T (1996) Appl Surf Sci 96–98:170–174

  32. Borisov OV, Mao XL, Fernandez A, Caetano M, Russo RE (1999) Spectrochim Acta Part B 54:1351–1365

    Google Scholar 

  33. Lide DR (ed) (1992) CRC Handbook of chemistry and physics. CRC Press, Boca Raton, FL

Download references

Acknowledgement

This work has been supported by the project MAT2002-01544 of the Spanish Ministerio de Educación y Ciencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Aragón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragón, C., Peñalba, F. & Aguilera, J.A. Spatial distributions of the number densities of neutral atoms and ions for the different elements in a laser induced plasma generated with a Ni-Fe-Al alloy. Anal Bioanal Chem 385, 295–302 (2006). https://doi.org/10.1007/s00216-006-0301-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0301-0

Keywords

Navigation