Skip to main content
Log in

Mass spectrometric identification of modified urinary nucleosides used as potential biomedical markers by LC–ITMS coupling

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In diseases accompanied by strong metabolic disorders, like cancer and AIDS, modifying enzymes are up- or down-regulated. As a result, many different types of metabolic end-products, including abnormal amounts of modified nucleosides, are found in urine. These nucleosides are degradation products of an impaired ribonucleic acid (RNA) metabolism, which affects the nucleoside pattern in urine. In several basic experiments we elucidated the fragmentation pathways of 16 characteristic nucleosides and six corresponding nucleic bases that occur in urine using electrospray ionization ion trap MS5 (ESI-ITMS) experiments operated in positive ionization mode. For urinary nucleoside analysis, we developed an auto-LC–MS3 method based on prepurification via boronate gel affinity chromatography followed by reversed phase chromatography. For this purpose, an endcapped LiChroCART Superspher RP 18 column with a gradient of ammonium formate and a methanol–water mixture was used. This method gives a limit of detection of between 0.1 and 9.6 pmol for 15 standard nucleosides, depending on the basicity of the nucleoside. Overall, the detection of 36 nucleosides from urine was feasible. It was shown that this auto-LC–MS3 method is a valuable tool for assigning nucleosides from complex biological matrices, and it may be utilized in the diagnosis of diseases associated with disorders in RNA metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3
Fig. 4a–b
Fig. 5

Similar content being viewed by others

References

  1. McCloskey JA, Crain PF (1998) Nucleic Acids Res 26:196–197

    Article  CAS  PubMed  Google Scholar 

  2. Bjoerk GR, Ericson JU, Gustafsson CED, Hagervall TG, Joensson YH, Wikstroem PM (1987) Annu Rev Biochem 56:63–87

    Article  PubMed  Google Scholar 

  3. Schram KH (1998) Mass Spectrom Rev 17:131–251

    Article  CAS  PubMed  Google Scholar 

  4. Nakano K, Nakao T, Schram KH, Hammargren WM, McClure TD, Katz M, Petersen E (1993) Clin Chim Acta 218:69–83

    Article  Google Scholar 

  5. Dieterle F, Muller-Hagedorn S, Liebich HM, Gauglitz G (2003) Artif Intell Med 28:65–79

    Google Scholar 

  6. Hammargren WM, Schram KH, Nakano K, Yasaka T (1991) Anal Chim Acta 247:201–209

    Article  CAS  Google Scholar 

  7. Heldman DA, Grever MR, Speicher CE, Trewyn RW (1983) J Lab Clin Med 101:783–792

    CAS  PubMed  Google Scholar 

  8. Itoh K, Konno T, Sasaki T, Ishiwata S, Ishida N, Misugaki M (1992) Clin Chim Acta 206:181–189

    Article  CAS  PubMed  Google Scholar 

  9. Ravdin PM, Clark GM (1992) Breast Cancer Res Treat 22:285–293

    CAS  PubMed  Google Scholar 

  10. Sasco AJ, Rey F, Reynaud C, Bobin JY, Clavel M, Niveleau A (1996) Cancer Lett 108:157–162

    Article  CAS  PubMed  Google Scholar 

  11. Tamura S, Fujii J, Nakano T, Hada T, Higashino K (1986) Clin Chim Acta 154:125–132

    Article  CAS  PubMed  Google Scholar 

  12. Tormey DC, Waalkes TP, Gehrke CW (1975) J Surg Oncol 14:267–273

    Google Scholar 

  13. Waalkes TP, Abeloff MD, Ettinger DS, Woo KB, Gehrke CW, Kuo KC, Borek E (1982) Eur J Cancer Clin Oncol 18:1267–1274

    Article  CAS  PubMed  Google Scholar 

  14. Xu G, Schmid HR, Lu X, Liebich HM, Lu P (2000) Biomed Chromatogr 14:459–463

    Article  CAS  PubMed  Google Scholar 

  15. Dudley E, Lemiere F, Van Dongen W, Langridge JI, El Sharkawi S, Games DE, Esmans EL, Newton RP (2003) Rapid Commun Mass Spectrom 17:1132–1136

    Article  CAS  PubMed  Google Scholar 

  16. Gehrke CW, Kuo KC, Davis GE, Suits RD, Waalkes TP, Borek E (1978) J Chromatogr 150:455–476

    Article  CAS  PubMed  Google Scholar 

  17. Liebich HM, Di Stefano C, Wixforth A, Schmid HR (1997) J Chromatogr A 763:193–197

    Article  CAS  PubMed  Google Scholar 

  18. Liebich HM, Xu G, Di Stefano C, Lehmann R (1998) J Chromatogr A 793:341–347

    Article  CAS  PubMed  Google Scholar 

  19. Dudley E, Lemiere F, Van Dongen W, Langridge JI, El Sharkawi S, Games DE, Esmans EL, Newton RP (2001) Rapid Commun Mass Spectrom 15:1701–1707

    Article  CAS  PubMed  Google Scholar 

  20. Dudley E, El Sharkawi S, Games DE, Newton RP (2000) Rapid Commun Mass Spectrom 14:1200–1207

    Article  CAS  PubMed  Google Scholar 

  21. Esmans EL, Broes D, Hoes I, Lemiere F, Vanhoutte K (1998) J Chromatogr A 794:109–127

    Article  CAS  Google Scholar 

  22. Nelson CC, McCloskey JA (1992) J Am Chem Soc 114:3661–3668

    Article  CAS  Google Scholar 

  23. Nelson CC, McCloskey JA (1994) J Am Soc Mass Spectrom 5:339–349

    Article  CAS  Google Scholar 

  24. Bordas-Nagy J, Despeyroux D, Jennings KR (1992) J Am Soc Mass Spectrom 3:502–514

    Article  CAS  Google Scholar 

  25. Uziel M, Taylor SA (1978) J Carb-Nucleos-Nucl 5:235–249

    CAS  Google Scholar 

  26. Wulff UC, Desai LS, Heuer R, Meissner J, Foley GE (1975) Exp Cell Res 90:63–72

    Article  CAS  PubMed  Google Scholar 

  27. Chheda GB, Mittelman A, Grace JT Jr (1969) J Pharm Sci 58:75–78

    CAS  PubMed  Google Scholar 

  28. Gehrke CW, Kuo KC, Waalkes TP, Borek E (1979) Cancer Res 39:1150–1153

    CAS  PubMed  Google Scholar 

  29. McEntire JE, Kuo KC, Smith ME, Stalling DL, Richens JW Jr, Zumwalt RW, Gehrke CW, Papermaster BW (1989) Cancer Res 49:1057–1062

    CAS  PubMed  Google Scholar 

  30. Thomale J, Nass G (1982) Cancer Lett 15:149–159

    Article  CAS  PubMed  Google Scholar 

  31. Chang ML, Johnson BC (1961) J Biol Chem 236:2096–2098

    CAS  PubMed  Google Scholar 

  32. Limbach PA, Crain PF, McCloskey JA (1994) Nucleic Acids Res 22:2183–2196

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Burbiel from the Institute of Pharmacy, Friedrich-Wilhelms-University Bonn, for synthesis of 1-methylinosine. Antje Frickenschmidt is a recipient of a scholarship provided by the DFG Graduiertenkolleg Analytische Chemie of Tübingen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Kammerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kammerer, B., Frickenschmidt, A., Müller, C.E. et al. Mass spectrometric identification of modified urinary nucleosides used as potential biomedical markers by LC–ITMS coupling. Anal Bioanal Chem 382, 1017–1026 (2005). https://doi.org/10.1007/s00216-005-3232-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3232-2

Keywords

Navigation