Skip to main content
Log in

Determination of furfural in an oscillating chemical reaction using an analyte pulse perturbation technique

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A rapid and convenient method for the determination of furfural is presented that is based upon sequential perturbation of the Mn(II)-catalyzed B-Z oscillating system with different amounts of furfural using a continuous-flow stirred tank reactor (CSTR). When the sample was injected, the change in the amplitude and/or period was linearly proportional to the logarithm of the concentration of furfural over the range 3×10−8∼1×10−5 mol L−1. This method gave a detection limit of 3×10−9 mol L−1 under optimum conditions. Finally, the possible mechanism of furfural perturbation in the oscillating reaction is discussed.

When the furfural was injected into the Mn(II)-catalyzed B-Z oscillating system, the change in the amplitude and/or period was linearly proportional to the logarithm of the concentration of furfural over the range 3×10−8~1×10−5 mol L−1, with a detection limit of 3×10−9 mol L−1 under optimum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jimenez-Prieto R, Silva M, Perez-Bendito D (1998) Analyst 123:1R–8R

    Article  CAS  Google Scholar 

  2. Gao JZ (2005) Pak J Biol Sci (Rev) 8(4):512–519

    Google Scholar 

  3. Taylor AF (2002) Prog React Kinet Mech 27(4):247–325

    CAS  Google Scholar 

  4. Jimenez-Prieto R, Silva M, Perez-Bendito D (1995) Anal Chem 67:729–734

    Article  CAS  Google Scholar 

  5. Jimenez-Prieto R, Silva M, Perez-Bendito D (1996) Anal Chim Acta 334(3):323–330

    Article  CAS  Google Scholar 

  6. Jimenez-Prieto R, Silva M, Perez-Bendito D (1996) Analyst 121(4):563–566

    Article  CAS  Google Scholar 

  7. Jimenez-Prieto R, Silva M, Perez-Bendito D (1997) Analyst 122(3):287–292

    Article  CAS  Google Scholar 

  8. Jimenez-Prieto R, Silva M, Perez-Bendito D (1997) Talanta 44(8):1463–1472

    Article  CAS  Google Scholar 

  9. Raoof JB, Ojani R, Kiani A, Khosravi M, Adnani A (2005) Bull Chem Soc Jpn 78(2):258–261

    Article  CAS  Google Scholar 

  10. Gao JZ, Sun KJ, Yang W, Yang FW, Zhao GH (2004) Pak J Biol Sci 7:1721–1726

    Article  Google Scholar 

  11. Toledo R, Silva M, Khavrus VO, Strizhak PE (2000) Analyst 125:2118–2124

    Article  CAS  Google Scholar 

  12. Yang B, An CJ, Zheng D, Ding ZZ (2002) Chinese J Inorg Chem 18(9):874–878

    Google Scholar 

  13. Ojani R, Raoof J, Mahdavi F (2003) Bull Chem Soc Jpn 76(11):2117–2121

    Article  CAS  Google Scholar 

  14. Liu XH, Yang H, Gao JZ, Ma YJ, Lu XQ (2001) Chinese J Anal Chem 29(11):1318–1321

    Google Scholar 

  15. Raoof J, Ojani R, Kiani A (2004) Anal Sci 20(5):883–886

    Article  CAS  Google Scholar 

  16. Strizhak PE, Khavrus VO (2000) Talanta 51:935–947

    Article  CAS  Google Scholar 

  17. Strizhak PE, Didenko OZ, Ivashchenko TS (2001) Anal Chim Acta 428:15–21

    Article  CAS  Google Scholar 

  18. Chavez-Servýn JL, Castellote AI, Lopez-Sabater MC (2005) J Chromatogr A 1076:133–140

    Article  CAS  Google Scholar 

  19. Ferrer E, Alegria A, Farre R, Abellan P, Romero F (2005) Food Chem 89:639–645

    Article  CAS  Google Scholar 

  20. Ho P, Hogg TA, Silva MCM (1999) Food Chem 64:115–122

    Article  CAS  Google Scholar 

  21. Dinsmore HL, Nagy S (1974) J AOAC 57:332–335

    CAS  Google Scholar 

  22. Nilsson A, Lagesson V, Bornehag CG, Sundell J, Tagesson C (2005) Environ Int 31:1141–1148

    Article  CAS  Google Scholar 

  23. Venskutonis RP, Vasiliauskaite R, Galdikas A, Setkus A (2002) Food Control 13:13–21

    Article  CAS  Google Scholar 

  24. Fitzgerald G, James KJ, MacNamara K, Stack MA (2000) J Chromatogr A 896:351–359

    Article  CAS  Google Scholar 

  25. Vereda-Alonso E, Perez-Hidalgo JA, Rios A, Valcarcel M (1999) Chemometr Intell Lab 48:81–90

    Article  CAS  Google Scholar 

  26. Field RJ, Körös E, Noyes RM (1972) J Am Chem Soc 94:8649–8664

    Article  CAS  Google Scholar 

  27. An CJ, Gan NQ, Cai RX (1999) J Wuhan Uni (Ch) 145:411–414

    Google Scholar 

  28. Du HB, Zhao J, Xiong JL (2003) Arid Environ Monit (Ch) 17(3):137–138

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Project of International Cooperation between China and Ukraine (043-05), the National Natural Science Foundation (20475044) and the Invention Project of Science & Technology (KJCXGC-01, NWNU), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhang Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Dai, H., Yang, W. et al. Determination of furfural in an oscillating chemical reaction using an analyte pulse perturbation technique. Anal Bioanal Chem 384, 1438–1443 (2006). https://doi.org/10.1007/s00216-005-0282-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0282-4

Keywords

Navigation