Skip to main content
Log in

Determination of multiclass pesticides in food commodities by pressurized liquid extraction using GC–MS/MS and LC–MS/MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Pressurized liquid extraction (PLE) was applied to the simultaneous extraction of a wide range of pesticides from food commodities. Extractions were performed by mixing 4 g of sample with 4 g of Hydromatrix and (after optimization) a mixture of ethyl acetate:acetone (3:1, v/v) as extraction solvent, a temperature of 100°C, a pressure of 1000 psi and a static extraction time of 5 min. After extraction, the more polar compounds were analyzed by liquid chromatography (LC), and the apolar and semipolar pesticides by gas chromatography (GC); in both cases LC and GC were coupled with mass spectrometry in tandem (MS/MS) mode. The overall method (including the PLE step) was validated in GC and LC according to the criteria of the SANCO Document of the European Commission. The average extraction recoveries (at two concentration levels) for most of the analytes were in the range 70–80%, with precision values usually lower than 15%. Limits of quantification (LOQ) were low enough to determine the pesticide residues at concentrations below or equal to the maximum residue levels (MRL) specified by legislation. In order to assess its applicability to the analysis of real samples, aliquots of 15 vegetable samples were processed using a conventional extraction method with dichloromethane, and the results obtained were compared with the proposed PLE method; differences lower than 0.01 mg kg−1 were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Granby K, Hinge Andersen J, Bjerre Christensen H (2004) Anal Chim Acta 520:165–176

    Article  CAS  Google Scholar 

  2. Stajnbaherm D, Zupancic-Kralij L (2003) J Chromatogr A 1015:185–198

    Article  PubMed  CAS  Google Scholar 

  3. Blasco C, Picó Y, Mañes J, Font G (2002) J Chromatogr A 947:227–235

    Article  PubMed  CAS  Google Scholar 

  4. Sannino A, Bolzoni L, Bandini M (2004) J Chromatogr A 1036:161–169

    Article  PubMed  CAS  Google Scholar 

  5. Sandra P, Tienpont B, David F (2003) J Chromatogr A 1000:299–309

    Article  PubMed  CAS  Google Scholar 

  6. Mool HGJ, van Dam RCJ, Steijger OM (2003) J Chromatogr A 1015:119–127

    Article  PubMed  CAS  Google Scholar 

  7. Garrido Frenich A, Martínez Vidal JL, López-López T, Cortes Aguado S, Martínez Salvador I (2004) J Chromatogr A 1048:199–206

    Article  PubMed  CAS  Google Scholar 

  8. Arrebola FJ, Martínez Vidal JL, González-Rodríguez MJ, Garrido Frenich A, Sánchez Morito N (2003) J Chromatogr A 1005:131–141

    Article  PubMed  CAS  Google Scholar 

  9. Martínez Vidal JL, Arrebola FJ, Mateu Sánchez M (2002) Rapid Commun Mass Spectrom 16:1106–1115

    Article  CAS  Google Scholar 

  10. Richter BE, Jones BA, Ezzel JL, Porter NL (2003) Anal Chem 68:1033–1039

    Article  Google Scholar 

  11. Lehotay SJ (1997) J Chromatogr A 785:289–312

    Article  PubMed  CAS  Google Scholar 

  12. Pihlström T, Isaac G, Waldebäck M, Österdahl B-G, Markides KE (2002) Analyst 127:554–559

    Article  PubMed  CAS  Google Scholar 

  13. Adou K, Bontoyan WR, Sweeney P (2001) J Agric Food Chem 49:4153–4160

    Article  PubMed  CAS  Google Scholar 

  14. Obana H, Kikuchi K, Okihashi M, Hori S (1997) Analyst 122:217–220

    Article  PubMed  CAS  Google Scholar 

  15. Lehotay SJ, Lee C-H (1997) J Chromatogr A 785:313–327

    Article  PubMed  CAS  Google Scholar 

  16. Concha-Graña E, Turnes-Carou MI, Muniategui-Lorenzo S, López-Mahía P, Fernández-Fernández E, Prada-Rodríguez D (2004) J Chromatogr A 1047:147–155

    Article  PubMed  CAS  Google Scholar 

  17. Dabrowski L, Giergielewicz-Mozajska H, Biziuk M, Gaca J, Namiesk J (2002) J Chromatogr A 957:59–67

    Article  PubMed  CAS  Google Scholar 

  18. Marchese S, Perret D, Gentili A, Curini R, Marino A (2001) Rapid Commun Mass Spectrom 15:393–400

    Article  CAS  Google Scholar 

  19. Hubert A, Wenzel K-D, Manz M, Weissflog L, Engewald W, Schuurmann G (2000) Anal Chem 72:1294–2000

    Article  PubMed  CAS  Google Scholar 

  20. Björklund E, Nilsson T (2000) Trends Anal Chem 19:434–445

    Article  Google Scholar 

  21. EU (2003) Quality control procedures for pesticide residues analysis. Guidelines for residues monitoring in the European Union (SANCO/10476/2003), 3rd edn. European Union, Brussels

    Google Scholar 

  22. EU (2004) Guidance document on residue analytical methods (SANCO/825/rev. 7). European Union, Brussels

    Google Scholar 

  23. EU (1993) Order 93/58/EEC of the Council, 23 August 1993. European Union, Brussels

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Town Council of El Ejido (Almería, Spain), and to the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) (Project CAL-03-055) (Spain) for their financial and material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Garrido Frenich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrido Frenich, A., Martínez Salvador, I., Martínez Vidal, J.L. et al. Determination of multiclass pesticides in food commodities by pressurized liquid extraction using GC–MS/MS and LC–MS/MS. Anal Bioanal Chem 383, 1106–1118 (2005). https://doi.org/10.1007/s00216-005-0139-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0139-x

Keywords

Navigation