Skip to main content
Log in

QSAR study on the Ah receptor-binding affinities of polyhalogenated dibenzo-p-dioxins using net atomic-charge descriptors and a radial basis neural network

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A radial basis function neural network (RBFN) has been used to correlate Ah receptor-binding affinities of polychlorinated, polybrominated, and polychlorinated–brominated dibenzo-p-dioxins with molecular weight and eight net atomic charge descriptors. Support vector machine (SVM) and partial least square (PLS) regression models based on the same data set have also been built. Leave-one-out cross-validation was used to train the RBFN, SVM, and PLS models. For predicting Ah receptor-binding affinities, the RBFN model with a squared cross-validation correlation coefficient (q 2) of 0.8818 outperforms the SVM and PLS models and also compares favorably with any other reported quantitative structure–activity relationship model based on the same activity data set. The significance of the RBFN model with net atomic charges as descriptors suggests that electrostatic and dispersion-type interactions play important roles in governing the Ah receptor binding of polychlorinated, polybrominated, and polychlorinated–brominated dibenzo-p-dioxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Safe S (1986) Annu Rev Pharmacol Toxicol 26:371

    Article  PubMed  CAS  Google Scholar 

  2. Landers JP, Bunce NJ (1991) Biochem J 276:273–287

    PubMed  CAS  Google Scholar 

  3. Murray JS, Evans P, Politzer P (1990) Int J Quant Chem 37:271–289

    Article  CAS  Google Scholar 

  4. Waller CL, McKinney JD (1992) J Med Chem 35:3660–3666

    Article  PubMed  CAS  Google Scholar 

  5. Kafafi SA, Afeefy HY, Said HK, Kafafi AG (1993) Chem Res Toxicol 6:328–334

    Article  PubMed  CAS  Google Scholar 

  6. Gillner M, Bergman J, Cambillau C, Alexandersson M, Fernstro B, Gustafsson JA (1993) Mol Pharmacol 44:336–345

    PubMed  CAS  Google Scholar 

  7. Poso A, Tuppurainen K, Ruuskanen J, Gynther J (1993) J Mol Struct Theochem 282:259–264

    Article  Google Scholar 

  8. Wagener M, Sadowski J, Gasteiger J (1995) J Am Chem Soc 117:7769–7775

    Article  CAS  Google Scholar 

  9. Waller CL, McKinney JD (1995) Chem Res Toxicol 8:847–858

    Article  PubMed  CAS  Google Scholar 

  10. Botani L, Fraschini E, Lasagni M, Modoni EP, Pitea D (1995) J Mol Struct Theochem 340:83–95

    Article  Google Scholar 

  11. Fraschini E, Bonati L, Pitea D (1996) J Phys Chem 100:10564–10569

    Article  CAS  Google Scholar 

  12. So SS, Karplus M (1997) J Med Chem 40:4360–4371

    Article  PubMed  CAS  Google Scholar 

  13. Tuppurainen K, Ruuskanen J (2000) Chemosphere 41:843–848

    Article  PubMed  CAS  Google Scholar 

  14. Asatryan RS, Mailyan NS, Khachatryan L, Dellinger B (2002) Chemosphere 48:227–236

    Article  PubMed  CAS  Google Scholar 

  15. Mhin BJ, Lee JE, Choi W (2002) J Am Chem Soc 124:144–148

    Article  PubMed  CAS  Google Scholar 

  16. Arulmozhiraja S, Morita M (2004) Chem Res Toxicol 17:348–356

    Article  PubMed  CAS  Google Scholar 

  17. Hirokawa S, Imasaka T, Imasaka T (2005) Chem Res Toxicol 18:232–238

    Article  PubMed  CAS  Google Scholar 

  18. Loukas YL (2000) Anal Chim Acta 417:221–229

    Article  CAS  Google Scholar 

  19. Yao XJ, Zhang XY, Zhang RS, Liu MC, Hu ZD, Fan BT (2001) Comput Chem 25:475–482

    Article  PubMed  CAS  Google Scholar 

  20. Agatonovic-Kustrin S, Beresford R, Yusof APM (2001) J Pharm Biomed Anal 25:227–237

    Article  PubMed  CAS  Google Scholar 

  21. Yao XJ, Liu MC, Zhang XY, Hu ZD, Fan BT (2002) Anal Chim Acta 462:101–117

    Article  CAS  Google Scholar 

  22. Yao XJ, Zhang XY, Zhang RS, Liu MC, Hu ZD, Fan BT (2002) Comput Chem 26:159–169

    Article  CAS  Google Scholar 

  23. Yao XJ, Wang YW, Zhang XY, Zhang RS, Liu MC, Hu ZD, Fan BT (2002) Chemometr Intell Lab Syst 62:217–225

    Article  CAS  Google Scholar 

  24. Yao XJ, Zhang XY, Zhang RS, Liu MC, Hu ZD, Fan BT (2002) Talanta 57:297–306

    Article  CAS  Google Scholar 

  25. Wang YW, Zhang XY, Yao XJ, Gao YH, Liu MC, Hu ZD, Fan BT (2002) Anal Chim Acta 463:89–97

    Article  CAS  Google Scholar 

  26. Wang YW, Gao SL, Gao YH, Liu SH, Liu MC, Hu ZD, Fan BT (2003) Anal Chim Acta 486:191–197

    Article  CAS  Google Scholar 

  27. Gao YH, Wang YW, Yao XJ, Zhang XY, Liu MC, Hu ZD, Fan BT (2003) Talanta 59:229–237

    Article  CAS  Google Scholar 

  28. Patankar SJ, Jurs PC (2003) J Chem Inf Comput Sci 43:885–899

    Article  PubMed  CAS  Google Scholar 

  29. Yao XJ, Fan BT, Doucet JP, Panaye A, Liu MC, Zhang RS, Zhang XY, Hu ZD (2003) QSAR Comb Sci 22:29–48

    Article  CAS  Google Scholar 

  30. Yao XJ, Panaye A, Doucet JP, Zhang RS, Chen HF, Liu MC, Hu ZD, Fan BT (2004) J Chem Inf Comput Sci 44:1257–1266

    Article  PubMed  CAS  Google Scholar 

  31. Xue CX, Zhang RS, Liu HX, Liu MC, Hu ZD, Fan BT (2004) J Chem Inf Comput Sci 44:1267–1274

    Article  PubMed  CAS  Google Scholar 

  32. Xue CX, Zhang RS, Liu HX, Yao XJ, Liu MC, Hu ZD, Fan BT (2004) J Chem Inf Comput Sci 44:669–677

    Article  PubMed  CAS  Google Scholar 

  33. Yao XJ, Panaye A, Doucet JP, Chen HF, Zhang RS, Fan BT, Liu MC, Hu ZD (2005) Anal Chim Acta 535:259–273

    Article  CAS  Google Scholar 

  34. Afantitis A, Melagraki G, Makridima K, Alexandridis A, Sarimveis H, Iglessi-Markopoulou O (2005) J Mol Struct Theochem 716:193–198

    Article  CAS  Google Scholar 

  35. Denison MS, Pandini A, Nagy SR, Baldwin EP, Bonati L (2002) Chem-Biol Interact 141:3–24

    Article  PubMed  CAS  Google Scholar 

  36. So SS, Karplus M (1997) J Med Chem 40:4360–4371

    Article  PubMed  CAS  Google Scholar 

  37. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm

  38. Kaliszan R (1993) J Chromatogr A 656A:417–435

    Article  Google Scholar 

  39. Shigeki K, Mai K, Keiichiro S, Yoko I, Akira T (1999) J Mol Struct 475:203–217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Lu.

Appendix

Appendix

  • AHH–aryl hydrocarbon hydroxylase

  • AhR–Ah receptor

  • bHLH–basic helix–loop–helix

  • CV–cross-validation

  • EROD–7-ethoxyresorufin O-deethylase

  • LOO–leave-one-out

  • PAS–Per–Arnt–Sim

  • PBDD–polybrominated dibenzo-p-dioxin

  • PCA–principal components analysis

  • PCB–polychlorinated biphenyl

  • PCDD–polychlorinated dibenzo-p-dioxin

  • PCDF–polychlorinated dibenzofuran

  • pEC50–the negative logarithm of the half-maximum effective concentration for assessing AhR-binding affinity of compounds

  • PLS–partial least squares regression

  • PRESS–predictive residual error sum of squares, \({\text{PRESS}} = {\sum\limits_{i = 1}^n {{\left( {\ifmmode\expandafter\hat\else\expandafter\^\fi{y}_{i} - y_{i} } \right)}^{2} } }\), \(\ifmmode\expandafter\hat\else\expandafter\^\fi{y}_{i}\) is the predicted value from cross-validation and y i is the experimental value.

  • PXDD–polychlorinated dibenzo-p-dioxin, polybrominated dibenzo-p-dioxin, or polychlorinated–brominated dibenzo-p-dioxin

  • q 2–the square correlation coefficient for cross-validation, \({\text{q}}^{2} = 1 - {{\text{PRESS}}} \mathord{\left/ {\vphantom {{{\text{PRESS}}} {{\sum\limits_{i = 1}^n {{\left( {y_{i} - \ifmmode\expandafter\bar\else\expandafter\=\fi{y}} \right)}^{2} } }}}} \right. \kern-\nulldelimiterspace} {{\sum\limits_{i = 1}^n {{\left( {y_{i} - \ifmmode\expandafter\bar\else\expandafter\=\fi{y}} \right)}^{2} } }}\), \(\ifmmode\expandafter\bar\else\expandafter\=\fi{y}\) is the average experimental value

  • QSAR–quantitative structure–activity relationship

  • QSPR–quantitative structure-property relationship

  • R–correlation coefficient,

    $${\text{R}} = {{\sum\limits_{i = 1}^n {{\left( {x_{i} - \ifmmode\expandafter\bar\else\expandafter\=\fi{x}} \right)}{\left( {y_{i} - \ifmmode\expandafter\bar\else\expandafter\=\fi{y}} \right)}} }} \mathord{\left/ {\vphantom {{{\sum\limits_{i = 1}^n {{\left( {x_{i} - \ifmmode\expandafter\bar\else\expandafter\=\fi{x}} \right)}{\left( {y_{i} - \ifmmode\expandafter\bar\else\expandafter\=\fi{y}} \right)}} }} {{\sqrt {{\sum\limits_{i = 1}^n {{\left( {x_{i} - \ifmmode\expandafter\bar\else\expandafter\=\fi{x}} \right)}^{2} {\sum\limits_{i = 1}^n {{\left( {y_{i} - \ifmmode\expandafter\bar\else\expandafter\=\fi{y}} \right)}^{2} } }} }} }}}} \right. \kern-\nulldelimiterspace} {{\sqrt {{\sum\limits_{i = 1}^n {{\left( {x_{i} - \ifmmode\expandafter\bar\else\expandafter\=\fi{x}} \right)}^{2} {\sum\limits_{i = 1}^n {{\left( {y_{i} - \ifmmode\expandafter\bar\else\expandafter\=\fi{y}} \right)}^{2} } }} }} }}$$
  • RBFN–radial basis function neural network

  • RE–relative error

  • RMSE–root mean square error, \({\text{RMSE}} = {\sqrt {{{\sum\limits_{i = 1}^n {{\left( {\ifmmode\expandafter\hat\else\expandafter\^\fi{y}_{i} - y_{i} } \right)}^{2} } }} \mathord{\left/ {\vphantom {{{\sum\limits_{i = 1}^n {{\left( {\ifmmode\expandafter\hat\else\expandafter\^\fi{y}_{i} - y_{i} } \right)}^{2} } }} n}} \right. \kern-\nulldelimiterspace} n} }\)

  • SVM–support vector machine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, G., Xiao, M. & Lu, X.H. QSAR study on the Ah receptor-binding affinities of polyhalogenated dibenzo-p-dioxins using net atomic-charge descriptors and a radial basis neural network. Anal Bioanal Chem 383, 810–816 (2005). https://doi.org/10.1007/s00216-005-0085-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0085-7

Keywords

Navigation