Skip to main content
Log in

Development of a passive micromixer based on repeated fluid twisting and flattening, and its application to DNA purification

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have developed a three-dimensional passive micromixer based on new mixing principles, fluid twisting and flattening. This micromixer is constructed by repeating two microchannel segments, a “main channel” and a “flattened channel”, which are very different in size and are arranged perpendicularly. At the intersection of these segments the fluid inside the micromixer is twisted and then, in the flattened channel, the diffusion length is greatly reduced, achieving high mixing efficiency. Several types of micromixer were fabricated and the effect of microchannel geometry on mixing performance was evaluated. We also integrated this micromixer with a miniaturized DNA purification device, in which the concentration of the buffer solution could be rapidly changed, to perform DNA purification based on solid-phase extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, Sammarco TS, Man PM, Jones D, Heldsinger D (1998) Science 282:484–487

    Article  PubMed  CAS  Google Scholar 

  2. Kricka LJ, Wilding P (2003) Anal Bioanal Chem 377:820–825

    Article  PubMed  CAS  Google Scholar 

  3. Bilitewski U, Genrich M, Kadow S, Mersal G (2003) Anal Bioanal Chem 377:556–569

    Article  PubMed  CAS  Google Scholar 

  4. Zhu X, Kim ES (1998) Sens Actuators A 66:355–360

    Article  Google Scholar 

  5. Yang Z, Goto H, Matsumoto M, Maeda R (2000) Electrophoresis 21:116–119

    Article  PubMed  CAS  Google Scholar 

  6. Lu LH, Ryu KS, Liu C (2002) J Microelectromech Syst 11:462–469

    Article  CAS  Google Scholar 

  7. Oddy MH, Santiago JG, Mikkelsen JC (2001) Anal Chem 73:5822–5832

    Article  PubMed  CAS  Google Scholar 

  8. Wu HY, Liu CH (2005) Sens Actuators A 118:107–115

    Article  CAS  Google Scholar 

  9. Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) J Microelectromech Syst 9:190–197

    Article  Google Scholar 

  10. Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Science 295:647–651

    Article  PubMed  CAS  Google Scholar 

  11. Park SJ, Kim JK, Park J, Chung S, Chung C, Chang JK (2004) J Micromech Microeng 14:6–14

    Article  Google Scholar 

  12. Schwesinger N, Frank T, Wurmus H (1996) J Micromech Microeng 6:99–102

    Article  CAS  Google Scholar 

  13. Bessoth FG, deMello AJ, Manz A (1999) Anal Commun 36:213–215

    Article  CAS  Google Scholar 

  14. Mae K, Maki T, Hasegawa I, Eto U, Mizutani Y, Honda N (2004) Chem Eng J 101:31–38

    Article  CAS  Google Scholar 

  15. Ehrfeld W, Golbig K, Hessel V, Löwe H, Richter T (1999) Ind Eng Chem Res 38:1075–1082

    Article  CAS  Google Scholar 

  16. Johnson TJ, Ross D, Locascio LE (2002) Anal Chem 74:45–51

    Article  PubMed  CAS  Google Scholar 

  17. Chung YC, Hsu YL, Jen CP, Lu MC, Lin YC (2004) Lab Chip 4:70–77

    Article  PubMed  CAS  Google Scholar 

  18. Jeon MK, Kim JH, Noh J, Kim SH, Park HG, Woo SI (2005) J Micromech Microeng 15:346–350

    Article  Google Scholar 

  19. Kirner T, Albert J, Günther M, Mayer G, Reinhäckel K, Köhler JM (2004) Chem Eng J 101:65–74

    Article  CAS  Google Scholar 

  20. Kim DJ, Oh HJ, Park TH, Choo JB, Lee SH (2005) Analyst 130:293–298

    Article  PubMed  CAS  Google Scholar 

  21. Nguyen NT, Wu Z (2005) J Micromech Microeng 15:R1–R16

    Article  Google Scholar 

  22. Tian H, Huhmer AFR, Landers JP (2000) Anal Biochem 283:175–191

    Article  PubMed  CAS  Google Scholar 

  23. Lee NY, Yamada M, Seki M (2004) Anal Sci 20:483–487

    Article  PubMed  CAS  Google Scholar 

  24. Yamada M, Seki M (2004) Anal Chem 76:895–899

    Article  PubMed  CAS  Google Scholar 

  25. Gill P, Jeffreys AJ, Werrett DJ (1985) Nature 318:577–579

    Article  PubMed  CAS  Google Scholar 

  26. Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RC (1991) Am J Hum Genet 48:137–144

    PubMed  CAS  Google Scholar 

  27. Roy R (1997) Forensic Sci Int 87:63–71

    Article  PubMed  CAS  Google Scholar 

  28. Hayes JM, Budowle B, Freund M (1995) J Forensic Sci 40:888–892

    PubMed  CAS  Google Scholar 

  29. Weigl BH, Yager P (1999) Science 283:346–347

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Grant-in-Aids for JSPS Fellows, Scientific Research (B) (No. 16310101), and Priority Areas (A) (No. 13025216) from the Ministry of Education, Science, Sports and Culture of Japan, and by the Research Association of Micro Chemical Process Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Seki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, N.Y., Yamada, M. & Seki, M. Development of a passive micromixer based on repeated fluid twisting and flattening, and its application to DNA purification. Anal Bioanal Chem 383, 776–782 (2005). https://doi.org/10.1007/s00216-005-0073-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0073-y

Keywords

Navigation