Skip to main content
Log in

Enhanced signal generation for use in the analysis of synthetic pyrethroids using chemical ionization tandem quadrupole ion trap mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Synthetic pyrethroids fragment extensively under electron ionization (EI) conditions to give low mass ions, most of them with the same m/z ratios. This fragmentation is primarily due to the labile ester linkage found in these compounds. In this research we established the best gas chromatography (GC) conditions in the EI mode that served as a benchmark in the development of a chemical ionization (CI) protocol for ten selected synthetic pyrethroids. Based on proton affinity data, several reagent gases were evaluated in the positive CI ionization mode. Methanol was found to produce higher average ion counts relative to the other gases evaluated, which led to the development of an optimized method consisting of selective ejection chemical ionization (SECI) and MS/MS. Standard stainless steel ion trap electrodes produced significant degradation of chromatographic performance on late eluting compounds, which was attributed to electrode surface chemistry. A dramatic improvement in signal-to-noise (S/N) ratios was observed when the chromatographically inert Silcosteel® coated electrodes were used. The resulting method, that has significant S/N ratio improvements resulting from a combination of septum programmable injections (SPI), optimized CI and inert Silcosteel®-coated electrodes, was used to determine instrument detection limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zong-Mao C, Yun-Hao W (1996) J Chromatogr A 754:367–395

    Article  PubMed  Google Scholar 

  2. Class TJ (1991) J High Res Chromatogr 14:446–450

    CAS  Google Scholar 

  3. Naumann K (1990) Synthetic pyrethroid insecticides: chemistry and patents, vol 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Blaβ W, Weiler EW (1990) Chemistry of plant protection, vol 3. Springer, Berlin Heildelberg New York

  5. Moraghan JJ, Lee WT, Fleet IA (1993) Org Mass Spectrom 28:626–634

    Google Scholar 

  6. Holmstead RL, Soderlund DM (1977) J AOAC 60(3):685–689

    CAS  Google Scholar 

  7. Wei LY (1991) Pestic Sci 32:141–145

    CAS  Google Scholar 

  8. Brown RT, Pfeil RM, Eller IK, Argauer JR (1997) J Agr Food Chem 45:180–184

    Article  Google Scholar 

  9. Ramesh A, Ravi PE (2004) J Chromatogr B 802:371–376

    Article  CAS  Google Scholar 

  10. Schettgen T, Koch HM, Drexler H, Angerer J (2002) J Chromatogr B 778:121–130

    Article  CAS  Google Scholar 

  11. Ahmed EF (2001) TrAC–Trends Anal Chem 20(11):649–661

    Google Scholar 

  12. Barr DB, Needham LL (2002) J Chromatogr B 778(1–2):5–9

    Google Scholar 

  13. Kocourek V, Hajölov J, Holadov K, Poustka J (1998) J Chromatogr A 800(2):297–302

    Article  CAS  Google Scholar 

  14. Pang G et al (2000) J Chromatogr A 882(1–2):231–238

    Article  CAS  PubMed  Google Scholar 

  15. Lopez-Lopez T, Gil-Garcia MD, Martinez-Vidal JL, Martinez-Galera M (2001) Anal Chim Acta 447(1–2):101–111

    Article  CAS  Google Scholar 

  16. Elflein L, Berger-Preiss E, Preiss A, Elend M, Levsen K, Wηnsch G (2003) J Chromatogr B 795:195–207

    Article  CAS  Google Scholar 

  17. Olsson AO, Baker SE, Nguyen JV, Romanoff LC, Udunka SO, Walker RD, Flemmen KL, Barr DB (2004) Anal Chem 76(9):2453–2461

    Article  CAS  PubMed  Google Scholar 

  18. Liu WP, Gan JJ (2004) J Agr Food Chem 52(4):736–741

    Article  CAS  Google Scholar 

  19. Lee S, Gan J, Kabashima J (2002) J Agr Food Chem 50(25):7194–7198

    Article  CAS  Google Scholar 

  20. Bauerle GF Jr, Ray KL, Brodbelt JS (1995) Anal Chim Acta 317:137–148

    Article  CAS  Google Scholar 

  21. Varian Chromatography Systems (1996) Advanced MS Techniques Saturn GC/MS 2000. Varian Associates, Palo Alto, CA, pp 17–31

  22. Harrison GE (1992) Chemical ionization mass spectrometry. CRC, Boca Raton, FL, pp 36–37, 72

  23. Croley TR, Zemribo R, Lynn BC Jr (1999) Int J Mass Spectrom 190/191:265–279

    Article  CAS  Google Scholar 

  24. Kimbrough DE, Wakakuwa J (1993) Environ Sci Technol 27(13):2692–2699

    CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the Mississippi State Chemical Laboratory in this work. Financial support was obtained from the Fulbright Foundation and the Department of Chemistry of Mississippi State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwenga Sichilongo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sichilongo, K. Enhanced signal generation for use in the analysis of synthetic pyrethroids using chemical ionization tandem quadrupole ion trap mass spectrometry. Anal Bioanal Chem 380, 942–949 (2004). https://doi.org/10.1007/s00216-004-2864-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2864-y

Keywords

Navigation