Skip to main content
Log in

Interpolation and approximation of water quality time series and process identification

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Data records with equidistant time intervals are fundamental prerequisites for the development of water quality simulation models. Usually long-term water quality data time series contain missing data or data with different sampling intervals. In such cases “artificial” data have to be added to obtain records based on a regular time grid. Generally, this can be done by interpolation, approximation or filtering of data sets. In contrast to approximation by an analytical function, interpolation methods estimate missing data by means of measured concentration values. In this paper, methods of interpolation and approximation are applied to long-term water quality data sets with daily sampling intervals. Using such data for the water temperature and phosphate phosphorus in some shallow lakes, it was possible to identify the process of phosphate remobilisation from sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Einax JW, Zwanziger HW, Geiß S (1997) Chemometrics in environmental analysis. VCH, Weinheim

    Google Scholar 

  2. Thomann RV (1967) In: Proceedings of ASCE. J San Eng Div 93:1–23

    Google Scholar 

  3. Edwards AMC, Thornes JB (1973) Water Resour Res 9:1286–1295

    CAS  Google Scholar 

  4. Reckhow EH, Chapra SC (1983) Engineering approaches for lake management, vol 1. Data analysis and empirical modeling. Butterworth, Woburn, UK

  5. Van Dongen G, Geuens L (1998) Water Res 32:691–700

    Article  Google Scholar 

  6. Worral F, Burt TP (1999) J Hydrol 214:74–90

    Article  Google Scholar 

  7. Hirsch RM, Slack JR, Smith RA (1982) Water Resour Res 18:107–121

    Google Scholar 

  8. Van Belle G, Hughes JP (1984) Water Resour Res 20:127–136

    Google Scholar 

  9. Franses PH (1994) J Econometrics 63:133–151

    Article  Google Scholar 

  10. Hondzo M, Stefan HG (1996) Water Res 30:2835–2852

    Article  CAS  Google Scholar 

  11. Bhangu I, Whitfield PH (1997) Water Res 31:2187–2194

    Article  CAS  Google Scholar 

  12. Young PC, Whitehead PG (1975) A recursive approach to time-series analysis for multivariable systems. In: Vansteenkiste GC (ed) Modelling and simulation of water resources systems. North-Holland, Amsterdam, pp 39–52

    Google Scholar 

  13. Whitehead PG (1978) 12:377–384

    Google Scholar 

  14. Beck MB (1979) Applications of system identification and parameter estimation in water quality modelling. IIASA, WP-79–99, Laxenburg

    Google Scholar 

  15. Vecchia AV (1985) Water Resour Bull 21:721–730

    CAS  PubMed  Google Scholar 

  16. Whigham PA, Recknagel F (2001) Ecol Model 146:275–287

    Article  Google Scholar 

  17. Straškraba M, Gnauck A (1985) Freshwater ecosystems—modelling and simulation. Elsevier, Amsterdam

    Google Scholar 

  18. Beck MB (1978) Mathematical modelling of water quality. IIASA, CP-78–10, Laxenburg

  19. Gnauck A (2000) Fundamentals of ecosystem theory from general systems analysis. In: Jørgensen SE, Müller F (eds) Handbook of ecosystem theories and management. Lewis, Dordrecht

    Google Scholar 

  20. Danzer K, Hobert H, Fischbacher C, Jagemann K-U (2001) Chemometrik. Springer, Berlin Heidelberg New York

    Google Scholar 

  21. Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, Chichester, UK

    Google Scholar 

  22. Latini G, Passerini G (eds) (2004) Handling missing data. WIT, Southampton, UK

  23. Keith LH (1988) (ed) Principles of environmental sampling. ACS, Washington

    Google Scholar 

  24. Sanders TG, Adrian DD (1978) Water Resour Res 14 569–576

    Google Scholar 

  25. Dandy GC, Moore SF (1979) In: Proceedings of ASCE. J Environ Eng Div 105:695–712

    CAS  Google Scholar 

  26. Casey D, Nemetz PN, Uyeno DH (1983) Water Resour Res 19:1107–1110

    Google Scholar 

  27. Lange H (1999) Charakterisierung ökosystemarer Zeitreihen mit nichtlinearen Methoden. Bayreuther Forum Ökologie, Bd. 70, Bayreuth

    Google Scholar 

  28. Meloun M, Militky J, Forina M (1994) Chemometrics for analytical chemistry. Ellis Horwood, New York

    Google Scholar 

  29. Hilborn R, Mangel M (1997) The ecological detective. Princeton University Press, Princeton, NJ

    Google Scholar 

  30. Adorf H-M (1995) Interpolation of irregularly sampled data series— a survey. In: Shaw RA, Payne HE, Hayes JJE (eds) Astronomical data analysis software and systems IV. Academic, New York, pp 1–4

    Google Scholar 

  31. Pagano M (1978) Ann Stat 6:1310–1317

    Article  CAS  Google Scholar 

  32. Young PC (1984) Recursive estimation and time series analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  33. Hornik K, Stinchcombe M, White, H (1989) Neural Networks 2:359–366

    Article  Google Scholar 

  34. Vecchia AV, Ballerini R (1991) Biometrika 78:18–32

    Google Scholar 

  35. Franses PH, Draisma G (1997) J Econometrics 81:273–280

    Article  Google Scholar 

  36. Franses AV (1999) Periodicity and structural breaks in environmetric time series. In: Mahendrarajah S, Jakeman AJ, McAleer M (eds) Modelling change in integrated economic and environmental systems. Wiley, New York

    Google Scholar 

  37. Young PC (1999) Prog Environ Sci 1:3–48

    Article  Google Scholar 

  38. Romanowicz R, Petersen W (2003) Acta Hydrochim Hydrobiol 31:319–333

    Article  CAS  Google Scholar 

  39. Gnauck A, Winkler W (1983) Acta Hydrochim Hydrobiol 11:109–124

    Google Scholar 

  40. Costanza R (1991) (ed) Ecological economics. Columbia University Press, New York

    Google Scholar 

  41. Baltagi BH (1999) Econometrics. Springer, Berlin Heidelberg New York

    Google Scholar 

  42. Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  43. Helmer R (1981) Nat Res XVII:7–13

    Google Scholar 

  44. Taniguchi M, Kakizawa Y (2000) Asymptotic theory of statistical inference for time series. Springer, Berlin Heidelberg New York

    Google Scholar 

  45. Lijklema L (1980) Environ Sci Technol 14: 537–541

    CAS  Google Scholar 

  46. Lijklema L (1983) Water Supply 1:35–42

    CAS  Google Scholar 

  47. Schettler G (1993) Dynamik und Bilanz des Schadstoffaustauschs zwischen Sediment und Wasserkörper in umweltbelasteten Havelseen. DFG, Bonn

    Google Scholar 

  48. Furrer G, Wehrli B (1993) Appl Geochem Suppl 2:117–119

    CAS  Google Scholar 

  49. Mothes G (1982) Acta Hydrophys 27:218–224

    Google Scholar 

  50. Schettler G (1995) Die Sedimente der Havelseen und deren jahreszeitliche Dynamik. In: Landesumweltamt Brandenburg (Hrsg.): Die Havel. Studien- und Tagungsberichte Bd. 8, Potsdam, pp 46–57

  51. Mallat S (1997) A wavelet tour of signal processing. Academic, New York

    Google Scholar 

  52. Gnauck A, Tesche T (1998) Int Rev Hydrobiol 83:207–214

    Google Scholar 

Download references

Acknowledgements

The author is indebted to Bernhard Luther and Hartmut Nemitz for their technical help, and to Thomas Tesche for wavelet computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Gnauck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnauck, A. Interpolation and approximation of water quality time series and process identification. Anal Bioanal Chem 380, 484–492 (2004). https://doi.org/10.1007/s00216-004-2799-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2799-3

Keywords

Navigation