Skip to main content
Log in

High-throughput analysis of phthalate esters in human serum by direct immersion SPME followed by isotope dilution–fast GC/MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Solid-phase microextraction (SPME) coupled to gas chromatography/mass spectrometry (GC/MS) was applied to the determination of phthalate esters in human serum. The present method decreased the sample preparation time by a factor of 50 by using direct immersion SPME with an 85-μm polyacrylate fiber to extract phthalate esters from the matrix. The use of fast GC/MS further improves total analysis time when compared to other techniques. Isotope dilution was successfully applied to improve the precision, reproducibility, and repeatability of the SPME method. The linear dynamic range spans several orders of magnitude from low ppb to ppm levels, and the LOD for the method is 15 pg μL−1 on average with RSDs less than 4% for the six phthalate esters included in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sommer W (ed) (1985) Plastic additives handbook: stabilizers, processing aids, plasticizers, fillers, reinforcements, colorants for thermoplastics. McMillan, New York

    Google Scholar 

  2. Rastogi SC (1998) Chromatographia 47:724–726

    CAS  Google Scholar 

  3. Leibowitz JN, Sarmiento R, Dugar SM, Ethridge MW (1995) J AOAC Int 78:730–735

    CAS  Google Scholar 

  4. Khaliq MA, Alam MS, Srivastava SP (1992) Bull Environ Contam Toxicol 48:572–578

    CAS  PubMed  Google Scholar 

  5. Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N (1995) Environ Health Perspect 103:608–612

    CAS  PubMed  Google Scholar 

  6. Giust JA, Seipelt CT, Anderson BK, Deis DA, Hinders JD (1990) J Agric Food Chem 38:415–418

    CAS  Google Scholar 

  7. Kataoka H, Ise M, Narimatsu S (2002) J Sep Sci 25:77–85

    Article  CAS  Google Scholar 

  8. Schulz CO (1989) Drug Metabol Rev 21:111–120

    Google Scholar 

  9. Huang GL, Sun HW, Song ZH (1999) Bull Environ Contam Toxicol 63:759–765

    Article  CAS  PubMed  Google Scholar 

  10. Kamendulis LM, Isenberg JS, Smith JH, Pugh G Jr, Lington AW, Klaunig JE (2002) J Toxicol Environ Health 65:569–588

    Article  CAS  Google Scholar 

  11. Harris CA, Henttu P, Parker MG, Sumpter JP (1997) Environ Health Perspect 105:802–811

    CAS  PubMed  Google Scholar 

  12. Jobling S, Reynolds T, White R, Parker MP, Sumpter JP (1995) Environ Health Perspect 103:582–587

    CAS  PubMed  Google Scholar 

  13. Colón I, Caro D, Bourdony CJ, Rosario O (2000) Environ Health Perspect 108:895–900

    Google Scholar 

  14. Malik S, Kenny M, Ahmad S (1993) Toxicol Environ Chem 37:133–137

    CAS  Google Scholar 

  15. Waliszewski M St, Szymczyński GA (1990) Andrologia 22:69–73

    PubMed  Google Scholar 

  16. Egestad B, Green G, Sjöberg P, Klasson-Wehler E, Gustafsson J (1996) J Chromatogr 677:99–109

    Article  Google Scholar 

  17. Dirven HAAM, van den Broek PHH, Jongeneelen FJ (1993) Int Arch Occup Environ Health 64:555–560

    CAS  PubMed  Google Scholar 

  18. Blount BC, Milgram KE, Silva MJ, Malek NA, Reidy JA, Needham LA, Brock JW (2000) Anal Chem 72:4127–4134

    Article  CAS  PubMed  Google Scholar 

  19. Lopez-Avila V, Milanes J, Constantine F, Beckert WFJ (1990) Assoc Off Anal Chem 73:709–720

    CAS  Google Scholar 

  20. Leung SC, Giang BY (1993) Bull Environ Contam Toxicol 50:528–532

    CAS  PubMed  Google Scholar 

  21. Patterson DG Jr, Barr JR, Dipietro ES, Grainger J, Green VE, Lapeza CR Jr, Maggio V, McClure PC, Sirimanne SR, Smith CJ, Turner WE, Woolfitt AR (1997) Organohalogen Compd 31:193–198

    CAS  Google Scholar 

  22. Dimandja J-MD, Grainger J, Patterson DG Jr, Turner WE, Needham LL (2000) J Expos Anal Environ Epidemiol 10:761–768

    CAS  Google Scholar 

  23. Zhang Z, Yang MJ, Pawliszyn J (1994) Anal Chem 66:844A–853A

    CAS  Google Scholar 

  24. Theodoridis G, Koster EHM, de Jong GJ (2000) J Chromatogr B 745:49–82

    Article  CAS  Google Scholar 

  25. Peñalver A, Pocurull E, Borrull F, Marcé RM (2000) J Chromatogr A 872:191–201

    Article  PubMed  Google Scholar 

  26. Peñalver A, Pocurull E, Borrull F, Marcé RM (2001) J Chromatogr A 922:377–384

    Article  PubMed  Google Scholar 

  27. Poon KF, Lam PKS, Lam MHW (1999) Anal Chim Acta 396:303–308

    Article  CAS  Google Scholar 

  28. Asaoka K, Hagihara K, Kabaya H, Sakamoto Y, Katayama H, Yano K (2000) Bull Environ Contam Toxicol 64:679–685

    Article  CAS  PubMed  Google Scholar 

  29. Caro DA (1990) Method development for the analysis of organic pollutants in blood serum by TD-GCMS. PhD Dissertation, University of Puerto Rico

  30. Marcel YL (1973) Environ Health Perspect 81:119–121

    Google Scholar 

  31. Colón I (1999) Analysis of exogenous compounds suspected of affecting the endocrine system of young Puerto Rican girls. PhD Dissertation, University of Puerto Rico

  32. Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR (1992) Anal Chem 64:1960–1966

    CAS  Google Scholar 

  33. Dirven HAAM, van den Broek PHH, Arends AMM, Nordkamp HH, de Lepper AJGM, Henderson PTh, Jongeneelen FJ (1993) Int Arch Occup Environ Health 64:549–554

    CAS  PubMed  Google Scholar 

  34. Pollack GM, Buchanan JF, Slaughter RL, Kohli RK, Shen DD (1985) Toxicol Appl Pharmacol 79:257–267

    CAS  PubMed  Google Scholar 

  35. Faouzi MA, Dine T, Gressier B, Kambia K, Luyckx M, Pagniez D, Brunet C, Cazin M, Belabed A, Cazin JC (1999) Int J Pharm 180:113–121

    Article  CAS  PubMed  Google Scholar 

  36. Baltussen E, Sandra P, Cramers CJ (1999) Microcol Sep 11:737–747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was conducted at the facilities of the Centers for Disease Control and Prevention (CDC) in Atlanta, GA, USA. The authors wish to thank the Oak Ridge Institute for Science and Education (ORISE) fellowship program for the post-doctoral funding of IC, Dr. James Grainger (CDC) for the synthesis of the 13C-labeled standards, and Mr. Garrick C. Clouden for his help with the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie D. Dimandja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colón, I., Dimandja, JM.D. High-throughput analysis of phthalate esters in human serum by direct immersion SPME followed by isotope dilution–fast GC/MS. Anal Bioanal Chem 380, 275–283 (2004). https://doi.org/10.1007/s00216-004-2743-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2743-6

Keywords

Navigation