Skip to main content

Advertisement

Log in

Determination of plutonium and its isotopic ratio in marine sediment samples using quadrupole ICP-MS with the shield torch system under normal plasma conditions

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical method for determining 239Pu and 240Pu in marine sediment samples, which uses quadrupole ICP-MS, was developed in this work. A simple anion-exchange chromatography system was employed for the separation and purification of Pu from the sample matrix. A sufficient decontamination factor of 1.4×104 for U, which interferes with the determination of 239Pu, was achieved. High sensitivity Pu determination was obtained, which led to an extremely low concentration detection limit of ~8 fg/ml (0.019 mBq/ml for 239Pu; 0.071 mBq/ml for 240Pu) in a sample solution, or an absolute detection limit of 42 fg in a 5 ml sample solution, by using the shield torch technique. Analytical results for the determination of the 239+240Pu and the 240Pu/239Pu ratio in IAEA 368 (ocean sediment) reference material indicated that the accuracy of the method was satisfactory. The method developed was successfully applied to a study of Pu behavior in the sediments from Sagami Bay, Japan. The observed high 240Pu/239Pu ratio in the sediment core indicated that there was additional Pu input derived from close-in fallout in addition to the global fallout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dozol M, Hagemann R (1993) Pure Appl Chem 65:1081–1102

    CAS  Google Scholar 

  2. Pockley P (2000) Nature 404:797–797

    PubMed  Google Scholar 

  3. Cochran JK (1985) Geochim Cosmochim Acta 49:1195–1210

    Article  CAS  Google Scholar 

  4. Livingston HD, Anderson RF (1983) Nature 303:228–231

    CAS  Google Scholar 

  5. Buesseler KO (1997) J Environ Radioactiv 36:69–83

    Article  CAS  Google Scholar 

  6. Yamada M, Nagaya Y (2000) J Radioanal Nucl Chem 245:273–279

    Article  CAS  Google Scholar 

  7. Yamada M, Aono T (2002) Sci Total Environ 287:97–105

    Article  CAS  PubMed  Google Scholar 

  8. Buesseler KO, Sholkovitz ED (1987) Geochim Cosmochim Acta 51:2623–2637

    Article  CAS  Google Scholar 

  9. Skwarzec B, Struminska DI, Prucnal M (2003) J Environ Radioactiv 70:237–252

    Article  CAS  Google Scholar 

  10. Buesseler KO, Halverson JE (1987) J Environ Radioactiv 5:425–444

    Article  CAS  Google Scholar 

  11. Cooper LW, Kelley JM, Bond LA, Orlandini KA, Grebmeier JM (2000) Mar Chem 69:253–276

    Article  CAS  Google Scholar 

  12. Kershaw PJ, Sampson KE, McCarthy W, Scott RD (1995) J Radioanal Nucl Chem 198:113–124

    CAS  Google Scholar 

  13. Muramatsu Y, Uchida S, Tagami K, Yoshida S, Fujikawa T (1999) J Anal Atom Spectrom 14:859–865

    Article  CAS  Google Scholar 

  14. Kim CS, Kim CK, Lee JI, Lee KJ (2000) J Anal Atom Spectrom 15:247–255

    Article  CAS  Google Scholar 

  15. Keterer ME, Watson BR, Matisoff G, Wilson CG (2002) Environ Sci Technol 36:1307–1311

    Article  PubMed  Google Scholar 

  16. Eroglu AE, McLeod CW, Leonard KS, McCubbin D (1998) Spectrochim Acta B 53:1221–1233

    Article  Google Scholar 

  17. Muramatsu Y, Yoshida S, Tanaka A (2003) J Radioanal Nucl Chem 255:477–480

    Article  CAS  Google Scholar 

  18. Muramatsu Y, Ruhm W, Yoshida S, Tagami K, Uchida S, Wirth E (2000) Environ Sci Technol 34:2913–2917

    Article  CAS  Google Scholar 

  19. Boulyga SF, Zoriy M, Ketterer ME, Becker JS (2003) J Environ Monit 5:661–666

    Article  CAS  PubMed  Google Scholar 

  20. Anderson RF, Fleer AP (1982) Anal Chem 54:1142–1147

    CAS  Google Scholar 

  21. Chiappini R, Taillade JM, Brebion S (1996) J Anal Atom Spectrom 11:497–504

    Article  CAS  Google Scholar 

  22. Cizdziel J, Hodge V, Faller S (1999) Health Phys 77:67–75

    CAS  PubMed  Google Scholar 

  23. Mietelski JW, Was B (1995) Appl Radiat Isot 46:1203–1211

    Article  CAS  Google Scholar 

  24. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation Exposures to the Public from Man-made Sources of Radiation) (2000) In: Sources and effects of ionizing radiation. United Nations, New York

  25. Yamada M, Nagaya Y (2000) J Radioanal Nucl Chem 246:369–378

    Article  CAS  Google Scholar 

  26. Zheng J, Yamada M (2003) Environ Sci Technol (in press)

  27. Muramatsu Y, Hamilton T, Uchida S, Tagami K, Yoshida S, Robison W (2001) Sci Total Environ 278:151–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Yamada, M., Wang, Z. et al. Determination of plutonium and its isotopic ratio in marine sediment samples using quadrupole ICP-MS with the shield torch system under normal plasma conditions. Anal Bioanal Chem 379, 532–539 (2004). https://doi.org/10.1007/s00216-004-2626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2626-x

Keywords

Navigation