Skip to main content
Log in

Capacitive chemical sensor for fenvalerate assay based on electropolymerized molecularly imprinted polymer as the sensitive layer

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A capacitive chemical sensor for fenvalerate is reported. By using ac impedance measurements the sensor has been based on the decrease in capacitance caused by the analyte used as the template in the formulation of an electropolymerized molecularly imprinted polymer as receptor layer. Improvement of the insulating properties of the sensor was investigated in detail. The capacitive sensor was prepared by a deposition of a self-assembled monolayer of 2-mercaptobenzimidazole (2-MBI) before electropolymerization of 2-MBI and subsequent treatment with n-dodecanethiol to eliminate pinholes and defects in the polymerized 2-MBI film. From the calibration curve concentrations of fenvalerate up to 9 μg mL−1 could be detected with a linear determination range up to 5 μg mL−1 and a detection limit of 0.36 μg mL−1. No significant interference was observed from common pyrethroid insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Rerences

  1. Sicbaldi F, Sarra A, Mutti D, Bo PF (1997) J Chromatogr A 765:13–22

    Article  CAS  Google Scholar 

  2. Lehotay SJ, Lightfield AR, Harman-Fetcho JA, Donoghue DJ (2001) J Agric Food Chem 49:4589-4596

    Article  CAS  PubMed  Google Scholar 

  3. Pang GF, Fan CL, Chao YZ, Zhao TS (1994) J Chromatogr A 667:348–353

    Google Scholar 

  4. Fernández-Gutiérrez A, Martínez-Vidal JL, Arrebola FJ, Gonzalez-Casado A, Vílchez JL (1998) Fresenius J Anal Chem 360:568–572

    Article  Google Scholar 

  5. López-López T, Gil-Garcia MD, Martínez-Vidal JL, Martínez-Galera M (2001) Anal Chim Acta 447:101–111

    Article  Google Scholar 

  6. Pasha A, Vijayashankar YN (1993) Analyst 118:777–778

    CAS  Google Scholar 

  7. Patil VB, Sevalkar MT, Padalikar SV (1992) Analyst 117:75–76

    PubMed  Google Scholar 

  8. Argauer RJ, Eller KI, Pfeil RM, Brown R (1997) J Agric Food Chem 45:180–184

    Article  CAS  Google Scholar 

  9. Ramesh A, Balasubramanian M (1998) Analyst 123:1799–1802

    CAS  PubMed  Google Scholar 

  10. Corbini G, Biondi C, Proietti D, Dreassi E, Corti P (1993) Analyst 118:183–187

    CAS  Google Scholar 

  11. Arrebola FJ, Martínez-Vidal JL, Fernández-Gutiérrez A, Akhtar MH (1999) Anal Chim Acta 401:45–54

    Article  CAS  Google Scholar 

  12. Matveeva EG, Shan GM, Kennedy IM, Gee SJ, Stoutamire DW, Hammock BD (2001) Anal Chim Acta 444:103–117

    Article  CAS  Google Scholar 

  13. McNeil CJ, Athey D, Ball M, Ho WO, Krause S, Armstrong RD, Wright JD, Rawson K (1995) Anal Chem 67:3928–3935

    CAS  Google Scholar 

  14. Baranski AS, Krogulec T, Neison LJ, Norouzi P (1998) Anal Chem 70:2895–2901

    Article  CAS  Google Scholar 

  15. Panasyuk TL, Mirsky VM, Piletsky SA, Wolfbeis OS (1999) Anal Chem 71:4609–4613

    Article  Google Scholar 

  16. Rubinstein I, Rishpon J, Sabatani E, Redondo A, Gottesfeld S (1990) J Am Chem Soc 112:6135–6136

    CAS  Google Scholar 

  17. Hao QL, Kulikov V, Mirsky VM (2003) Sens Actuators B 94:352–357

    Article  Google Scholar 

  18. Hayes WA, Kim H, Yue XH, Perry SS, Shannon C (1997) Langmuir 13:2511–2518

    Article  CAS  Google Scholar 

  19. Xue G, Huang XY, Dong J, Zhang JF (1991) J Electroanal Chem 310:139–148

    Article  CAS  Google Scholar 

  20. Assouli B, Ait Chikh ZA, Idrissi H, Srhiri A (2001) Polymer 42:2449–2454

    Article  CAS  Google Scholar 

  21. Taj S, Sankarapapavinasam (1997) Bull Electrochem 13:213–215

    CAS  Google Scholar 

  22. Perrin FX, Pagetti J (1998) Corros Sci 40:1647–1662

    Article  CAS  Google Scholar 

  23. Trachli B, Keddam M, Takenouti H, Srhiri A (2002) Prog Org Coat 44:17–23

    Article  CAS  Google Scholar 

  24. Van Allan JA, Deacon BD (1950) Org Syntheses 30:56–57

    Google Scholar 

  25. Riepl M, Mirsky VM, Wolfbeis OS (1999) Mikrochim Acta 131:29–34

    CAS  Google Scholar 

  26. Spurlock LD, Jaramillo A, Praserthdam A, Lewis J, Brajter-Toth A (1996) Anal Chim Acta 336:37–46

    Article  Google Scholar 

  27. Hsueh CC, Brajter-Toth A (1994) Anal Chem 66:2458–2464

    CAS  Google Scholar 

  28. Panasyuk-Delaney T, Mirsky VM, Ulbricht M, Wolfbeis OS (2001) Anal Chim Acta 435:157–162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the following organizations for financial support: the National Natural Science Foundation of China (grants 20075006, 29975006, and 29735150), Science Commission of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Qin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, JL., Gong, FC., Kuang, Y. et al. Capacitive chemical sensor for fenvalerate assay based on electropolymerized molecularly imprinted polymer as the sensitive layer. Anal Bioanal Chem 379, 302–307 (2004). https://doi.org/10.1007/s00216-004-2568-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2568-3

Keywords

Navigation