Skip to main content
Log in

Chemical partitioning of aluminium in rocks, soils, and sediments acidified by mining activity

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The work presented describes the application of different analytical approaches for study of aluminium mobility in rock, soil, and sediment samples affected by mining activity (secondary quartzites with sulfidic deposits). For this purpose we used a combination of the single extractions, the optimized BCR three-step sequential extraction procedure (SEP), and reactive aluminium determination after chelating ion-exchange on Ostsorb (Iontosorb) Salicyl by a batch technique with flame atomic absorption spectrometry quantification. The single extraction agents H2O, KCl, NH4Cl, and BaCl2 were found to be the best for the quantitative estimation of the aluminium mobility in rocks, soils, and sediments caused by acidification of the environment. This fact was confirmed by reactive aluminium determination in the same samples. The vast majority of the aluminium content of samples after application of the optimized BCR three-step SEP is in the residues. The available fraction of aluminium extracted by dilute CH3COOH in the first step of this procedure correlates with the reactive aluminium content. The amounts of aluminium released in the second and the third steps and the sums from steps 1–3 of this procedure are closely associated with the aluminium content values obtained by the single dilute HCl leach. The accuracy of results obtained was verified with only informative values for individual fractions of the BCR three-step SEP because of the absence of suitable certified or standard reference materials. The amounts of the reactive aluminium determined in samples was in the range 12–82% of total soluble Al in the filtered H2O extracts. It was confirmed that the acidified polluted samples contain the most of reactive Al content, which is responsible for its toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sposito G (1996) (ed) The Environmental chemistry of aluminum, 2nd edn. CRC Press, Boca Raton, Florida

  2. Gensemer RW, Playle RC (1999) Crit Rev Environ Sci Technol 29:315–450

    CAS  Google Scholar 

  3. Boudot JP, Becquer T, Merlet D, Rouiller J (1994) Ann Sci For 51:27–51

    Google Scholar 

  4. Clarke N, Danielsson L-G, Sparén A (1996) Pure Appl Chem 68:1597–1638

    CAS  Google Scholar 

  5. Quevauviller Ph (1998) Method performance studies for speciation analysis. RSC, Cambridge, pp 172–178

  6. Bi S, Yang X, Zhang F, Wang X, Zou G (2001) Fresenius J Anal Chem 370:984–996

    Google Scholar 

  7. Matúš P, Kubová J (2002) Chem Listy 96:174–181

    Google Scholar 

  8. Beckett PHT (1989) The use of extractants in studies on trace metals in soils, sewage sludges, and sludge-treated soils. In: Advances in soil science, vol 9. Springer, Berlin Heidelberg New York, pp 143–176

  9. Kot A, Namiesńik J (2000) Trends Anal Chem 19:69–79

    Article  CAS  Google Scholar 

  10. Kožuh N, Milačič R, Gorenc B (1996) Ann Chim-Rome 86:99–113

    Google Scholar 

  11. Jarvis SC (1986) J Soil Sci 37:211–222

    CAS  Google Scholar 

  12. Aitken RL (1992) Aust J Soil Res 30:119–130

    CAS  Google Scholar 

  13. Fernández-Sanjurjo MJ, Álvarez E, García-Rodeja E (1998) Water Air Soil Pollut 103:35–53

    Article  Google Scholar 

  14. Álvarez E, Monterroso C, Fernández-Marcos ML (2002) Forest Ecol Manage 166:193–206

    Article  Google Scholar 

  15. Krantzberg G (1994) Environ Toxicol Chem 13:1685–1698

    CAS  Google Scholar 

  16. Sutherland RA, Tack FMG (2000) Sci Total Environ 256:103–113

    Article  CAS  PubMed  Google Scholar 

  17. Sutherland RA (2002) Appl Geochem 17:353–365

    CAS  Google Scholar 

  18. Tessier A, Campbell PGC, Bisson M (1979) Anal Chem 51:844–851

    CAS  Google Scholar 

  19. Li X, Thornton I (2001) Appl Geochem 16:1693–1706

    Article  CAS  Google Scholar 

  20. Ure AM, Quevauviller Ph, Muntau H, Griepink B (1993) Int J Environ Anal Chem 51:135–151

    CAS  Google Scholar 

  21. Polyák K, Hlavay J (1999) Fresenius J Anal Chem 363:587–593

    Article  Google Scholar 

  22. Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller Ph (1999) J Environ Monit 1:57–61

    Article  CAS  PubMed  Google Scholar 

  23. Sutherland RA, Tack FMG (2002) Anal Chim Acta 454:249–257

    Article  CAS  Google Scholar 

  24. Campbell PGC, Bisson M, Bougie R, Tessier A, Villeneuve J-P (1983) Anal Chem 55:2246–2252

    CAS  Google Scholar 

  25. Driscoll CT (1984) Int J Environ Anal Chem 16:267–283

    CAS  Google Scholar 

  26. Dlapa P, Kubová J, Matúš P, Streško V (2002) Fresenius Environ Bull 11:626–630

    CAS  Google Scholar 

  27. Matúš P, Kubová J, Streško V (2003) Chem Pap 57:176–178

    Google Scholar 

  28. Šucha V, Kraus I, Zlocha M, Streško V, Gašparovičová M, Lintnerová O, UhlŢk P (1997) Mineralia Slov 29:407–416

    Google Scholar 

  29. Lintnerová O, Šucha V, Streško V (1999) Geol Carpath 50:395–404

    Google Scholar 

  30. Medveď J, Bujdoš M, Matúš P, Kubová J (2004) Anal Bioanal Chem, in press

  31. Hudáček M (2002) Podzemná voda VIII:180–189

  32. Directive of the Slovak Republic Government about the pollution limit values of surface and waste waters (242/1993)

  33. van Reeuwijk LP (1995) (ed.) Procedures for soil analysis, 5th edn. International Soil Reference and Information Centre, Wageningen

  34. Certificate of analysis CRM BCR 483 freshwater sediment, European Commission BCR Information Reference Materials, 1997

  35. Certificate of analysis CRM BCR 701 sewage sludge amended soil, European Commission BCR Information Reference Materials, 2001

  36. Certificate of analysis SRM 2710 Montana soil, National Institute of Standards and Technology, 2002

  37. Certificate of analysis SRM 2711 Montana soil, National Institute of Standards and Technology, 2002

  38. Polakovič J, Polakovičová J, Kubová J (2003) Anal Chim Acta 488:123–132

    Article  Google Scholar 

Download references

Acknowledgement

The work was financially supported by the VEGA Grant No 1/0031/03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Matúš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matúš, P., Kubová, J., Bujdoš, M. et al. Chemical partitioning of aluminium in rocks, soils, and sediments acidified by mining activity. Anal Bioanal Chem 379, 96–103 (2004). https://doi.org/10.1007/s00216-004-2562-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2562-9

Keywords

Navigation